码迷,mamicode.com
首页 > 其他好文 > 详细

ZigZag问题的一种新思路(Leetcode #6)

时间:2015-08-17 10:13:00      阅读:239      评论:0      收藏:0      [点我收藏+]

标签:leetcode   algorithm   graph   bfs   python   

原始问题(leetcode ZigZag Conversion

如果固定一个行数(这里是3),字符串 "PAYPALISHIRING" 用“之”字形的方式可以写成:

P   A   H   N
A P L S I I G
Y   I   R
 这个结果按照一行一行访问的话是: "PAHNAPLSIIGYIR"。给定一个字符串以及一个表示行数的整数,实现一个函数,返回按行序拼接而成的新串。
string convert(string text, int nRows);

convert("PAYPALISHIRING", 3) 返回 "PAHNAPLSIIGYIR".

思路

如果把字母的排列看成一个二维的表格,那么最左边的那些字母无疑落在了第0列上。题目要求按照行号从小到大、相同行号从左到右的方式组成新字符串。典型方法有两个:第一,用一个二维数组来存放,按照ZigZag的方式一列一列填充数组。然后按行访问就是新数组;第二,不适用额外空间,直接找出每一行不同字母在原字符串中的序号。leetcode上大多数方法应该都是这两种之一或其变体。

这里给出一个新思路,从另一个角度来看问题。如果把每个字母看成一个结点,字母之间的虚拟连接看成边,那么字符串就映射成了一张图。按照原始字符串中的排列顺序连接字母结点,这样每个字母(除了首、尾两个)都有前驱、后继两个邻居结点。反过来看,对于这样建立起来的一张图,原始序列其实就是对该图进行深度优先遍历(Depth First Search)的结果。

比如,对于字符串"ABCDE",ZigZag的排列方式如下,期望得到的新字符串为"AEBDC"。

A   E
B D
C

按照上述思路建立出下图。唯一不同的是多了个根结点R。R的出现是为了后续的广度优先遍历(Breadth First Search)。 第0行的每个结点(如‘A‘, ‘E‘)都必须与R相连。

技术分享
对这张图进行BFS,遍历序列为"RAEBDC",与期望结果相比只在最左端多了一个R,这可以通过为该结点赋一个空值""即可。下面说到的虚拟结点也可以采用相同技术。

特殊情况

在大功告成前还有最后一步,就是要处理一类特殊情况。之所以可以使用BFS来得到目标字符串序列的关键,是保证每个字母与源结点R有正确的距离。如果R的行号是-1,那么每个字母所在的行号(假设从0开始)与-1的距离就是距离源点R的深度。因为深度优先遍历是按照深度从小到大的顺序访问结点。当然,同一深度从左到右是我们这道题目的特殊要求,可以在建立图的时候得到保证。问题是E不一定存在。如原始串是"ABCD",对应的期望字符串为"ABDC"。但如果简单地把D与R相连的话就会产生"ADBC"的错误结果。一个方法是在最后一个处于非0行的字母与R之间建立虚拟结点,形成一条虚拟路径,如下图所示。

技术分享

Python代码

from collections import deque
 
class Node:
    def __init__(self, value):
        self.visited = False
        self.value = value
        self.neighbors = []
 
class Solution:
    # @param {string} s
    # @param {integer} numRows
    # @return {string}
    def convert(self, s, numRows):
        self.__s = s
        self.__numRows = numRows
        return self.__BFS(self.__buildGraph())
 
    def __connect(self, prev, this):
        prev.neighbors.append(this)
        this.neighbors.append(prev)
 
    def __buildGraph(self):
        '''Build the graph from DFS traversal of the string'''
        root = Node('')
        prev = None
        row = 0
        up = True
        for i in range(len(self.__s)):
            this = Node(self.__s[i])
            if prev is not None:
                self.__connect(prev, this)
            prev = this
            # Connect nearest nodes(those on row #0) to the root
            if row == 0:
                self.__connect(root, this)
 
            if up:
                if row < self.__numRows - 1:
                    row += 1
                elif row > 0:
                    row -= 1
                    up = False
            else:
                if row > 0:
                    row -= 1
                elif row < self.__numRows - 1:
                    row += 1
                    up = True
 
        # The triky part, for BFS later
        # Build a virtual path to connect to the root for the last branch, if not already
        if not up and row < self.__numRows - 2:
            for i in range(row, -1, -1):
                this = Node('')
                self.__connect(prev, this)
                prev = this
            self.__connect(prev, root)
 
        return root
 
 def __BFS(self, root):
    '''Breadth First Search gives the desired string'''
    work_queue = deque()
    root.visited = True
    work_queue.append(root)
 
    s = ''
    while work_queue:
        node = work_queue.popleft()
        # No special action for the root as it's an empty string;)
        s += node.value
        for i in node.neighbors:
            if not i.visited:
            i.visited = True
            work_queue.append(i)
    return s

这个基于图的深度优先遍历的方法可能没有其他常规方法快(时间复杂度都是O(n),n为字符串长度),但无疑是一种值得尝试的方法;)

其他方法

有时间的话会写一下常规方法。

版权声明:本文为博主原创文章,未经博主允许不得转载。

ZigZag问题的一种新思路(Leetcode #6)

标签:leetcode   algorithm   graph   bfs   python   

原文地址:http://blog.csdn.net/tonywearme/article/details/47719841

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!