标签:
题意:询问[l,r]区间的权和,权定义为sum(k^2*a[i]),k表示a[i]出现的次数
思路:区间每增加一个a[i],增量是(2*x+1)*a[i],因为(x+1)^2*a[i] = (x^2 +2*x + 1)*a[i]
分块排序即可,块内按r排序
代码:
#include <cstdio> #include <algorithm> #include <cmath> using namespace std; #define N 200100 typedef long long ll; ll a[N], cnt[N*5], ans[N], res; int L, R; struct node { int x, y, l, p; } q[N]; bool cmp(const node &x, const node &y) { if (x.l == y.l) return x.y < y.y; return x.l < y.l; } void query(int x, int y, int flag) { if (flag) { for (int i=x; i<L; i++) { res += ((cnt[a[i]]<<1)+1)*a[i]; cnt[a[i]]++; } for (int i=R+1; i<=y; i++) { res += ((cnt[a[i]]<<1)+1)*a[i]; cnt[a[i]]++; } for (int i=L; i<x; i++) { cnt[a[i]]--; res -= ((cnt[a[i]]<<1)+1)*a[i]; } for (int i=y+1; i<=R; i++) { cnt[a[i]]--; res -= ((cnt[a[i]]<<1)+1)*a[i]; } } else { for (int i=x; i<=y; i++) { res += ((cnt[a[i]]<<1)+1)*a[i]; cnt[a[i]]++; } } L = x, R = y; } int main() { int n, t; scanf("%d%d", &n, &t); for (int i=1; i<=n; i++) scanf("%I64d", &a[i]); int block_size = sqrt(n); for (int i=0; i<t; i++) { scanf("%d%d", &q[i].x, &q[i].y); q[i].l = q[i].x / block_size; q[i].p = i; } sort(q, q+t, cmp); for (int i=0; i<t; i++) { query(q[i].x, q[i].y, i); ans[q[i].p] = res; } for (int i=0; i<t; i++) printf("%I64d\n", ans[i]); return 0; }
【分块】Codeforces 86d Powerful array
标签:
原文地址:http://www.cnblogs.com/Rojo/p/4737342.html