标签:
题意:
给你n个区间,在每个区间里各取一个数(随机取),求这n个数中超过K%的数是首位为1数的概率
分析:
dp[i][j]取前i个数,有j个是首位为1的数的概率
易知,dp[i][j]=dp[i-1][j]*(1-p[i])+dp[i-1][j-1]*p[i];
现在关键是求p[i],第i个区间首位为1的数出现的概率,用数位统计一下即可
#include <map> #include <set> #include <list> #include <cmath> #include <queue> #include <stack> #include <cstdio> #include <vector> #include <string> #include <cctype> #include <complex> #include <cassert> #include <utility> #include <cstring> #include <cstdlib> #include <iostream> #include <algorithm> using namespace std; typedef pair<int,int> PII; typedef long long ll; #define lson l,m,rt<<1 #define pi acos(-1.0) #define rson m+1,r,rt<<11 #define All 1,N,1 #define read freopen("in.txt", "r", stdin) const ll INFll = 0x3f3f3f3f3f3f3f3fLL; const int INF= 0x7ffffff; const int mod = 1000000007; ll sum[20],a[20]; double dp[1010][1010],p[1010]; int bit[20],n,k; void init(){ sum[0]=1; for(int i=1;i<=20;++i) sum[i]=sum[i-1]*10; } ll countsum(int l){ ll total=0; for(int i=0;i<=l;++i) total+=sum[i]; return total; } //统计首位为1数的数量 ll countone(ll x){ if(x==0)return 0; init(); int len=0; while(x){ bit[++len]=x%10; x/=10; } if(bit[len]>1){ return countsum(len-1); } else{ ll tmp=countsum(len-2); a[0]=0; for(int i=1;i<=len-1;++i) a[i]=a[i-1]+bit[i]*sum[i-1]; tmp+=a[len-1]+1; return tmp; } } int main() { ll l,r; while(~scanf("%d",&n)){ for(int i=1;i<=n;++i){ scanf("%I64d%I64d",&l,&r); ll tmp=countone(r)-countone(l-1); //cout<<tmp<<endl; p[i]=1.0*tmp/(r-l+1); //cout<<p[i]<<endl; } dp[1][1]=p[1]; dp[1][0]=1.0-p[1]; for(int i=2;i<=n;++i) for(int j=0;j<=i;++j){ dp[i][j]+=dp[i-1][j]*(1.0-p[i]); if(j>0) dp[i][j]+=dp[i-1][j-1]*p[i]; } scanf("%d",&k); double ans=0.0; for(int j=0;j<=n;++j) if(j>=(1.0*n*k/100)) ans+=dp[n][j]; printf("%.15lf\n",ans); } return 0; }
CodeForces 54C-First Digit Law(数位,概率dp)
标签:
原文地址:http://www.cnblogs.com/zsf123/p/4738032.html