码迷,mamicode.com
首页 > 其他好文 > 详细

R中的正态分布函数

时间:2015-08-18 11:28:26      阅读:8185      评论:0      收藏:0      [点我收藏+]

标签:

norm表示正态分布:

rnorm(x):表示生成随机x个正态分布的序列,random

dnorm(x):输出正态分布的概率密度函数,density function————plot(dnorm(x)),画出密度曲线

pnorm(x):输出正态分布的分布函数,概率函数,probability function

【对于连续分布,分布函数就是从负无穷到x对概率密度函数的积分的结果】

qnorm(p):分位函数,quantile fuction。给出一个概率p,函数返回一个x,表明概率为p时的x值。

[设连续随机变量X的分布函数为F(X),密度函数为p(x)。那么,对任意0<p<1的p,称F(X)=p的x为此分布的分位数,或者下侧分位数。简单的说,分位数指的就是连续分布函数中的一个点,这个点对应概率p。]

help(dnorm):

dnorm gives the density, pnorm gives the distribution function, qnorm gives the quantile function[分位函数], and rnorm generates random deviates.

dnorm(x, mean = 0, sd = 1, log = FALSE) 默认情况下是标准正态分布
pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
rnorm(n, mean = 0, sd = 1)


x, q: vector of quantiles. 向量的分位数

p:vector of probabilities. 向量概率

n:number of observations. If length(n) > 1, the length is taken to be the number required.

mean:vector of means.

sd:vector of standard deviations.

log, log.p:logical; if TRUE, probabilities p are given as log(p).

如果log.p=TRUE,则在用qnorm(p)计算时变成qnrom(log(p))来计算。【由于概率p介0~1之间,当超出这个范围后,用此方法相当于是扩大的计算范围。如qnorm(-.5,log.p=F) == qnorm(log(-.5),log.p=F),后来验证,这种理解是错误的,正确的是什么?

lower.tail:logical; if TRUE (default), probabilities are P[X ≤ x] otherwise, P[X > x].

如果lower.tail=TRUE,则计算的是左侧面积的概率,即P[X ≤ x];否则就是右侧 P[X > x]=1-P[X ≤ x]

 


  正态分布函数:

技术分享,此式中当 μ=0, σ=1时,

标准正态分布函数为:

技术分享

 

 

技术分享便于理解公式的几个有趣例子:

dnorm(0) == 1/sqrt(2*pi),此时x=0, μ=0, σ=1
dnorm(1) == exp(-1/2)/sqrt(2*pi),下面式子的等价写法
dnorm(1) == 1/sqrt(2*pi*exp(1)),此时x=1, μ=0, σ=1

 


 

对于分位数的补充:

分位数函数:分位数函数是累积分布函数【概率函数】的反函数,也就是说,给定概率值,计算出随机变量的取值(左侧分位数)。

常用的有四个分布的分位数:

标准正态分布,qnorm(p, mean=0, sd=1)

Student’s (t) , qt(p,df=N,ncp=0)

卡方分布:qchisq(p, df=N,ncp=0)

Fisher-Snedecor:qf(p, df1,df2,ncp=0)

特例:

四分位数:四分位数是统计学中分位数的一种,即把所有的数值从小到大朴烈并分为四等分,处于三个分割点的数就是四分位数。

 

R中的正态分布函数

标签:

原文地址:http://www.cnblogs.com/ysdx2013/p/4738711.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!