码迷,mamicode.com
首页 > 其他好文 > 详细

多校 9

时间:2015-08-18 19:33:25      阅读:147      评论:0      收藏:0      [点我收藏+]

标签:acm   hdu   

Arithmetic Sequence

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 0    Accepted Submission(s): 0


Problem Description
A sequence b1,b2,?,bn are called (d1,d2)-arithmetic sequence if and only if there exist i(1in) such that for every j(1j<i),bj+1=bj+d1 and for every j(ij<n),bj+1=bj+d2.

Teacher Mai has a sequence a1,a2,?,an. He wants to know how many intervals [l,r](1lrn) there are that al,al+1,?,ar are (d1,d2)-arithmetic sequence.
 

Input
There are multiple test cases.

For each test case, the first line contains three numbers n,d1,d2(1n105,|d1|,|d2|1000), the next line contains n integers a1,a2,?,an(|ai|109).
 

Output
For each test case, print the answer.
 

Sample Input
5 2 -2 0 2 0 -2 0 5 2 3 2 3 3 3 3
 

Sample Output
12 5
 

Statistic | Submit | Clarifications | Back


#include <cstdio>
#include <iostream>
#include <cstring>

using namespace std;
#define N 100000 + 5
#define LL long long

int a[N];
int D1[N], D2[N];
int d1, d2;
int n;

int main()
{
    while(~scanf("%d%d%d", &n, &d1, &d2))
    {
        for(int i = 1; i <= n; i++)
        scanf("%d", a + i);

        D1[1] = D2[1] = 1;
        int cn1 = 1, cn2 = 1;
        for(int i = 2; i <= n; i++)
        {
            if(a[i] == a[i - 1] + d1)
            cn1++;
            else cn1 = 1;
            D1[i] = cn1;

            if(a[i] == a[i - 1] + d2)
            cn2++;
            else
            cn2= 1;
            D2[i] = cn2;
        }

//        for(int i = 1; i <= n; i++)
//        cout<<D1[i]<<" ";
//        cout<<endl;
//
//        for(int i = 1; i <= n; i++)
//        cout<<D2[i]<<" ";
//        cout<<endl;

        LL ans = 0;
        for(int i = 1; i <= n; i++)
        {
            if(D1[i] >= 2)
            {
                ans += D1[i];
            }
            else if(D2[i] >= 2)
            {
                int t = i - D2[i] + 1;
                ans += (D1[t] +  D2[i] - 1);
                //cout<<i<<": "<<D1[t] + D2[i]<<endl;
            }
            else ans += 1;
        }
        printf("%I64d\n", ans);
    }
}


/*


9 1 -1
1 2 3 4 5 4 3 2 1

*/

Too Simple

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 429    Accepted Submission(s): 83


Problem Description
Rhason Cheung had a simple problem, and asked Teacher Mai for help. But Teacher Mai thought this problem was too simple, sometimes naive. So she ask you for help.

Teacher Mai has m functions f1,f2,?,fm:{1,2,?,n}{1,2,?,n}(that means for all x{1,2,?,n},f(x){1,2,?,n}). But Rhason only knows some of these functions, and others are unknown.

She wants to know how many different function series f1,f2,?,fm there are that for every i(1in),f1(f2(?fm(i)))=i. Two function series f1,f2,?,fm and g1,g2,?,gm are considered different if and only if there exist i(1im),j(1jn),fi(j)gi(j).
 

Input
For each test case, the first lines contains two numbers n,m(1n,m100).

The following are m lines. In i-th line, there is one number ?1 or n space-separated numbers.

If there is only one number ?1, the function fi is unknown. Otherwise the j-th number in the i-th line means fi(j).
 

Output
For each test case print the answer modulo 109+7.
 

Sample Input
3 3 1 2 3 -1 3 2 1
 

Sample Output
1
Hint
The order in the function series is determined. What she can do is to assign the values to the unknown functions.
 

Statistic | Submit | Clarifications | Back


#include <cstdio>
#include <iostream>
#include <cstring>

using namespace std;
#define N 100 + 5
#define LL long long
const int mod = 1000000000 + 7;

int n, m;
int f[N][N];
int cnt;

int mul_pow(int a, int k)
{
    int res = 1;
    while(k)
    {
        if(k & 1)
        res = ((long long)res * a) % mod;
        a = ((long long)a * a) % mod;
        k >>= 1;
    }
    return res;
}

int fact(int a)
{
    int res = 1;
    for(int i = 1; i <= a; i++)
    res = ((LL)res * i) % mod;
    return res;
}

bool h[N];
int op[N];

int main()
{
    while(~scanf("%d%d", &n, &m))
    {
        memset(op, 0, sizeof op);
        int t;
        cnt = 0;
        for(int i = 1; i <= m; i++)
        {
            scanf("%d", &t);
            if(t == -1) {
                op[i] = 1;
                cnt++;
            }
            else
            {
                f[i][1] = t;
                for(int j = 2; j <= n; j++)
                scanf("%d", &f[i][j]);
            }
        }

        int flag = 0;

        for(int i = 1; i <= m; i++)
        {
            memset(h, false, sizeof h);
            if(op[i] == 0)
            for(int j = 1; j <= n; j++)
            {
                t = f[i][j];
                if(h[t] || t > n || t <= 0)
                {
                    //cout<<i<<" "<<j<<endl;
                    flag = 1;
                    break;
                }
                h[t] = true;
            }
        }
        if(flag)
        {
            printf("0\n");
            continue;
        }

        flag  = 0;
        if(cnt == 0)
        {
            for(int i = 1; i <= n; i++)
            {
                t = i;
                for(int j = m; j >= 1; j--)
                t = f[j][t];
                if(t != i)
                {
                    flag = 1;
                    break;
                }
            }
            if(flag) printf("0\n");
            else printf("1\n");
        }
        else
        {
            t = fact(n);
            int ans = mul_pow(t, cnt - 1);
            printf("%d\n", ans);
        }
    }
    return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

多校 9

标签:acm   hdu   

原文地址:http://blog.csdn.net/dojintian/article/details/47754535

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!