码迷,mamicode.com
首页 > 其他好文 > 详细

AAAI,ICML,IJCAI,AI,TPAMI,JMLR,DKE,TNNLS,SIGIR,TKDE,KDD

时间:2015-08-18 22:44:17      阅读:1579      评论:0      收藏:0      [点我收藏+]

标签:机器学习会议   人工智能会议   模式识别会议   

AAAI:  AAAI Conference on Artificial Intelligence

ICML: International Conference of Machine Leanring

IJCAI: International Joint Conference on Artificial Intelligence


AI: Artificial Intelligence

TPAMI:IEEE Trans on Pattern Analysis and Machine Intelligence

JMLR:Journal of Machine Learning Research

DKE:Data and Knowledge Engineering

TNNLS:IEEE Transactions on Neural Networks and learning systems


SIGIR: Special Interest Group on Information Retrieval

TKDE: transactions on knowledge and data engineering

KDD: knowledge discovery in databases

知识发现(KDD:Knowledge Discovery in Databases)是从数据集中识别出有效的、新颖的、潜在有用的,以及最终可理解的模式的非平凡过程。知识发现将信息变为知识,从数据矿山中找到蕴藏的知识金块,将为知识创新和知识经济的发展作出贡献。

数据库知识发现(knowledse discovery in databases,KDD)的研究非常活跃。该术语于1989年出现,Fayyad定义为"KDD"是从数据集中识别出有效的、新颖的、潜在有用的,以及最终可理解的模式的非平凡过程”。在上面的定义中,涉及几个需要进一步解释的概念:“数据集”、“模式”、“过程”、“有效性”、“新颖性”、“潜在有用性”和“最终可理解性”。数据集是一组事实 F(如关系数据库中的记录)。模式是一个用语言L来表示的一个表达式E,它可用来描述数据集F的某个子集凡上作为一个模式要求它比对数据子集FE的枚举要简单(所用的描述信息量要少)。过程在KDD中通常指多阶段的处理,涉及数据准备、模式搜索、知识评价以及反复的修改求精;该过程要求是非平凡的,意思是要有一定程度的智能性、自动性(仅仅给出所有数据的总和不能算作是一个发现过程)。有效性是指发现的模式对于新的数据仍保持有一定的可信度。新颖性要求发现的模式应该是新的。潜在有用性是指发现的知识将来有实际效用,如用于决策支持系统里可提高经济效益。最终可理解性要求发现的模式能被用户理解,目前它主要是体现在简洁性上。有效性、新颖性、潜在有用性和最终可理解性综合在一起称为兴趣性。

由于知识发现是一门受到来自各种不同领域的研究者关注的交叉性学科,因此导致了很多不同的术语名称。除了 KDD外,主要还有如下若干种称法:“数据挖掘”(data mining),“知识抽取”(information extraction)、“信息发现”(in1ormation discovery)、“智能数据分析”(intelligent data analysis)、“探索式数据分析”(exploratory data analysis)、“信息收获”(Information harvesting)和“数据考古”(data archaeology)等等。其中,最常用的术语是“知识发现”和“数据挖掘”。相对来讲,数据挖掘主要流行于统计界(最早出现于统计文献中)、数据分析、数据库和管理信息系统界;而知识发现则主要流行于人工智能和机器学习界。



ICIP: international conference on image processing

ICCV: international conference on computer vision

iccv: “ICCV”是“International Conference on Computer Vision”的简称。该会议由美国电气和电子工程师学会(IEEE,Institute of Electrical & Electronic Engineers)主办,通常是在北美、欧洲、亚洲的一些科研实力较强的国家举行。作为世界顶级的学术会议,首届国际计算机视觉大会于1987年在伦敦揭幕,其后两年举办一届。

计算机视觉是当前计算机科学研究的一个非常活跃的领域,该学科旨在为计算机和机器人开发出具有与人类水平相当的视觉能力。各国学者对于计算机视觉的研究始于20世纪60年代初,但相关基础研究的大部分重要进展则是在80年代以后取得的。近年来,全球学界愈来愈关注中国人在计算机视觉领域所取得的科研成就,这是因为由中国人主导的相关研究已取得了长足的进步——2007年大会共收到论文1200余篇,而获选论文仅为244篇,其中来自中国大陆,香港及台湾的论文有超过30篇,超过大会获选论文总数的12%。

ICIAP: international conference on image analysis and processing

CAIP: computer analysis on image and patterns

NIPS: Neural Information Processing Systems

Neural Information Processing Systems (NIPS) is a machine learning and computational neuroscience conference held every December in Vancouver

找到一个nips会议历年(1987-2008)文献的下载地址,很不错的 
http://books.nips.cc/ 
下面是会议的一些简介 
NIPS (1): 神经计算方面最好的会议之一, NIPS主办, 每年举行. 值得注意的是, 这个会每年的举办地都是一样的, 以前是美国丹佛, 现在是加拿大温哥华; 而且它是年底开会, 会开完后第2年才出论文集, 也就是说, NIPS‘05的论文集是06年出. 会议的名字是"Advances in Neural Information Processing Systems", 所以, 与ICML/ECML这样 的"标准的"机器学习会议不同, NIPS里有相当一部分神经科学的内容, 和机器学习有 一定的距离. 但由于会议的主体内容是机器学习, 或者说与机器学习关系紧密, 所以不少人把NIPS看成是机器学习方面最好的会议之一. 这个会议基本上控制在Michael  Jordan的徒子徒孙手中, 所以对Jordan系的人来说, 发NIPS并不是难事, 一些未必很 强的工作也能发上去, 但对这个圈子之外的人来说, 想发一篇实在很难, 因为留给"外人"的口子很小. 所以对Jordan系以外的人来说, 发NIPS的难度比ICML更大. 换句话说, ICML比较开放, 小圈子的影响不象NIPS那么大, 所以北美和欧洲人都认, 而NIPS则有 些人(特别是一些欧洲人, 包括一些大家)坚决不投稿. 这对会议本身当然并不是好事,  但因为Jordan系很强大, 所以它似乎也不太care. 最近IMLS(国际机器学习学会)改选理事, 有资格提名的人包括近三年在ICML/ECML/COLT发过文章的人, NIPS则被排除在外了. 无论如何, 这是一个非常好的会.

CVPR: computer vision and pattern recognition

ECML: European Conference on Machine Learning


版权声明:本文为博主原创文章,未经博主允许不得转载。

AAAI,ICML,IJCAI,AI,TPAMI,JMLR,DKE,TNNLS,SIGIR,TKDE,KDD

标签:机器学习会议   人工智能会议   模式识别会议   

原文地址:http://blog.csdn.net/mmc2015/article/details/47760551

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!