标签:
题意:m个{1,2...n}→{1,2...,n}的函数,有些已知有些未知,求对任意i∈{1,2,...,n},f1(f2(...(fm(i)))=i的方案总数,为了方便简记为F(i)
思路:如果存在一个f,当i!=j时,有f(i)=f(j),那么方案数为0,因为由里到外进行f运算,两个不同的数到这里来了变成了i和j,然后变成了同一个数,最终还是等于同一个数,所以在最外面至少有一个不会满足F(x)=x。如果f全部确定了,那么只需对每个i计算一下F(i)即可确定答案。如果f没确定的个数为cnt,则答案就是n!cnt-1,因为对后(cnt-1)个未确定的f,对于它们的每种合法情况,第一个f有且仅有唯一一种情况使得F(i)=i成立。
#pragma comment(linker, "/STACK:10240000") #include <map> #include <set> #include <cmath> #include <ctime> #include <deque> #include <queue> #include <stack> #include <vector> #include <cstdio> #include <string> #include <cstdlib> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define X first #define Y second #define pb push_back #define mp make_pair #define all(a) (a).begin(), (a).end() #define fillchar(a, x) memset(a, x, sizeof(a)) #define copy(a, b) memcpy(a, b, sizeof(a)) typedef long long ll; typedef pair<int, int> pii; typedef unsigned long long ull; //#ifndef ONLINE_JUDGE void RI(vector<int>&a,int n){a.resize(n);for(int i=0;i<n;i++)scanf("%d",&a[i]);} void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R> void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?1:-1; while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T> void print(const T t){cout<<t<<endl;}template<typename F,typename...R> void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T> void print(T*p, T*q){int d=p<q?1:-1;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;} //#endif template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);} template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);} const double PI = acos(-1.0); const int INF = 1e9 + 7; const double EPS = 1e-12; /* -------------------------------------------------------------------------------- */ const int md = 1e9 + 7; int n, m, f[101][101], fac[105]; int powermod(int a, int n, int md) { int ans = 1, tmp = a; while (n) { if (n & 1) ans = (ll)ans * tmp % md; tmp = (ll)tmp * tmp % md; n >>= 1; } return ans; } bool chk() { for (int i = 1; i <= n; i ++) { int p = i; for (int j = m - 1; j >= 0; j --) { p = f[j][p]; } if (p != i) return false; } return true; } int main() { #ifndef ONLINE_JUDGE freopen("in.txt", "r", stdin); //freopen("out.txt", "w", stdout); #endif // ONLINE_JUDGE fac[0] = 1; for (int i = 1; i <= 100; i ++) fac[i] = (ll)fac[i - 1] * i % md; int x; while (cin >> n >> m) { int cnt = 0; bool ok = true; for (int i = 0; i < m; i ++) { scanf("%d", &x); if (x == - 1) cnt ++; else { bool vis[105] = {}; vis[x] = true; f[i][1] = x; for (int j = 1; j < n; j ++) { scanf("%d", &x); vis[x] = true; f[i][j + 1] = x; } for (int i = 1; i <= n; i ++) { if (!vis[i]) ok = false; } } } if (!ok) puts("0"); else { if (cnt) printf("%d\n", powermod(fac[n], cnt - 1, md)); else printf("%d\n", chk()); } } return 0; }
标签:
原文地址:http://www.cnblogs.com/jklongint/p/4740901.html