码迷,mamicode.com
首页 > 其他好文 > 详细

HDU 5396 Expression(DP+组合数)(详解)

时间:2015-08-19 10:46:45      阅读:133      评论:0      收藏:0      [点我收藏+]

标签:

题目大意:
给你一个n然后是n个数。 然后是n-1个操作符,操作符是插入在两个数字之间的。 由于你不同的运算顺序,会产生不同的结果。
比如:
1 + 1 * 2 有两种  (1+1)*2   或者  1+(1*2)
1 *  2 * 3  也是两种即使结果是一样的  (1*2)*3  或者 1*(2*3)
问这所有不同的组合加起来的和对 1e9+7取余是多少。
 
这个其实就是区间DP了
dp[i][j] 代表的是区间  i 到 j 的和
枚举dp[i][j] 之间所有的子区间
假如是乘法:
t = dp[i][k] * dp[k+1][j];
这个其实可以直接算出来的:
假设我们dp[i][k] 里面所有的值是 (x1+x2+x3...xn) == dp[i][k]
假设我们dp[k+1][j] 里面所有的值是 (y1+y2+y3...yn) == dp[k+1][j]
dp[i][k] * dp[k+1][j] == (x1+x2+...xn) * (y1+y2+y3...yn) == x1*y1+x1y*y2......xn*yn 其实和所有不同结果相乘出来是一样的
 
假如是加法或者减法:
我们表示阶乘 i为A[i].
t = dp[i][k]*A[j-k-1] + dp[k+1][j]*A[k-i];
其实这里我们想一下。区间 dp[i][k] 需要加上多少次?
我们需要加的次数就是另一半区间的所有组合数,另一半区间有多少种组合方式我们就要加上多少个。
因为他们之间可以相互组成不同的种类。同理另一半也是。
 
最后的时候我们要乘上一个组合数。
假设组合数为C[i][j].
为什么要乘组合数:
因为 假如我们k 分割了两个运算式子   【 1+(2*3)  】 + 【 1+(3*4) 】
虽然说我们左右两边的式子运算顺序已经确定了,但是我们总的运算顺序还是不确定的, 比如我们算完(2*3) 直接去算(3*4)也是不同的结果
dp[i][j] = dp[i][j] + t*C[j-i-1][k-i]
这个其实就是从总的运算符(j-i-1)(减去了第k个的运算符)个中选取(k-i)个进行运算。
因为我们选取数达到 k-i的时候,另外我们还需要保持左右两边运算的相对顺序。
就比如说:左边有a 个运算符, 右边有b个运算符。
我们从 a+b个位置中选取 a位置个放a个的运算符。其余的只能放另一边的的运算符了。因为我们左右两边的相对顺序是不变的。
 
 
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<vector>
#include<queue>
#include<cmath>
using namespace std;
#define INF 0x3fffffff
#define maxn 110

typedef long long LL;
const LL MOD = 1e9+7;

LL A[maxn], C[maxn][maxn];
char op[maxn];
LL dp[maxn][maxn];

int main()
{
    int n;
    A[0] = 1;
    for(int i=1; i<=100; i++)
        A[i] = (A[i-1] * i)%MOD;
    C[0][0] = 1;
    for(int i=1; i<=100; i++)
    {
        C[i][0] = 1;
        for(int j=1; j<=i; j++)
            C[i][j] = (C[i-1][j-1] + C[i-1][j])%MOD;
    }

    while(scanf("%d", &n) != EOF)
    {
        memset(dp, 0, sizeof(dp));
        for(int i=1; i<=n; i++)
            scanf("%I64d", &dp[i][i]);
        scanf("%s", op+1);

        for(int L=2; L <= n; L++)
        {
            for(int i=1; i+L-1 <= n; i++)
            {
                int j = i + L - 1;
                dp[i][j] = 0;
                for(int k=i; k<j; k++)
                {
                    LL t;
                    if(op[k] == *)
                        t = (dp[i][k] * dp[k+1][j])%MOD;
                    if(op[k] == +)
                        t = (dp[i][k]*A[j-k-1] + dp[k+1][j]*A[k-i])%MOD;
                    if(op[k] == -)
                        t = (dp[i][k]*A[j-k-1] - dp[k+1][j]*A[k-i])%MOD;

                    dp[i][j] = (dp[i][j] + t * C[j-i-1][k-i])%MOD;
                }
            }
        }

        printf("%I64d\n", (dp[1][n]+MOD)%MOD );
    }
    return 0;
}

 

HDU 5396 Expression(DP+组合数)(详解)

标签:

原文地址:http://www.cnblogs.com/chenchengxun/p/4741439.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!