标签:
2 10 50 12 1213 1212 1313231 12312413 12312 4123 1231 3 131 5 50 121 123 213 132 321
86814837 797922656Hint11 111 is different with 111 11
求出邻接矩阵
然后矩阵快速幂
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (1000000007)
#define MAXN (60)
typedef long long ll;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
int a[MAXN];
bool conn(ll a,ll b)
{
while (a<b) b/=10;
ll p=1;
while (p*10<=a) p*=10;
while (b)
{
if (a<b) b/=10;
else if (a>b) {
a-=a/p*p;
p/=10;
}
else return abs(a)>9;
}
return 0;
}
struct M
{
int n,m;
ll a[MAXN][MAXN];
M(int _n=0){n=m=_n;MEM(a);}
M(int _n,int _m){n=_n,m=_m;MEM(a);}
void mem (int _n=0){n=m=_n;MEM(a);}
void mem (int _n,int _m){n=_n,m=_m;MEM(a);}
friend M operator*(M a,M b)
{
M c(a.n);
For(k,a.m)
For(i,a.n)
For(j,b.m)
c.a[i][j]=(c.a[i][j]+a.a[i][k]*b.a[k][j])%F;
return c;
}
void pri()
{
For(i,n)
{
For(j,m) cout<<a[i][j]<<' ';cout<<endl;
}
}
void make_I(int _n)
{
n=m=_n; MEM(a)
For(i,n) a[i][i]=1;
}
}A,I;
M pow2(M a,ll b)
{
M c=I;
static bool a2[1000000];
int n=0;while (b) a2[++n]=b&1,b>>=1;
For(i,n)
{
if (a2[i]) c=c*a;
a=a*a;
}
return c;
}
int n,m;
int main()
{
// freopen("C.in","r",stdin);
int T;cin>>T;
while(T--)
{
scanf("%d%d",&n,&m);
For(i,n) scanf("%d",&a[i]);
sort(a+1,a+1+n);
n=unique(a+1,a+1+n)-(a+1);
if (m==0)
{
cout<<"1"<<endl;
continue;
}
I.make_I(n); A.mem(n);
For(i,n)
For(j,n) A.a[i][j]=conn(a[i],a[j]);
// A.pri();
A=pow2(A,m-1);
ll ans=0;
For(i,n) For(j,n) upd(ans,A.a[i][j]);
printf("%lld\n",ans);
}
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
HDU 5318(The Goddess Of The Moon-矩阵乘法)[Template:矩阵]
标签:
原文地址:http://blog.csdn.net/nike0good/article/details/47781543