标签:
输入的时候没有取反,一直ole。
这里也是用到拆点,将一个点拆成p和q,这两个之间连接两条路,一条cap=1和cost=矩阵上的值,另一条为cap=k和cost=0。在将0和2*n *n+1看成源点和汇点。
#include<stdio.h>
#include<string.h>
#include<vector>
#include<queue>
#include<algorithm>
using namespace std;
const int N=10000+5;
struct Edge
{
int from,to,cap,flow,cost;
};
vector<Edge>edges;
vector<int>G[N];
int n,k,inq[N],d[N],p[N],a[N],c;
void AddEdge(int from,int to ,int cap,int cost)
{
Edge tp;
tp.from=from,tp.to=to,tp.cap=cap,tp.flow=0,tp.cost=cost;
edges.push_back(tp);
tp.from=to,tp.to=from,tp.cap=0,tp.flow=0,tp.cost=-cost;
edges.push_back(tp);
int g=edges.size();
G[from].push_back(g-2);
G[to].push_back(g-1);
}
int BellmanFord(int s,int t,int &flow, int &cost)
{
int i,j,u;
for(i=0; i<=t; i++) d[i]=-1;
memset(inq,0,sizeof(inq));
d[s]=0;
inq[s]=1;
p[s]=0;
a[s]=0xfffffff;
queue<int>Q;
Q.push(s);
while(!Q.empty())
{
u=Q.front();
Q.pop();
inq[u]=0;
for(i=0; i<G[u].size(); i++)
{
Edge &e=edges[G[u][i]];
if(e.cap>e.flow&&d[e.to]<d[u]+e.cost)
{
d[e.to]=d[u]+e.cost;
p[e.to]=G[u][i];
a[e.to]=min(a[u],e.cap-e.flow);
if(!inq[e.to])
{
Q.push(e.to);
inq[e.to]=1;
}
}
}
}
if(d[t]==-1) return 0;
flow+=a[t];
cost+=d[t]*a[t];
u=t;
while(u!=s)
{
edges[p[u]].flow+=a[t];
edges[p[u]^1].flow-=a[t];
u=edges[p[u]].from;
}
return 1;
}
int Mincost(int s,int t)
{
int flow=0,cost=0;
while(BellmanFord(s,t,flow,cost));
return cost;
}
int main()
{
int i,j;
while(~scanf("%d%d",&n,&k))
{
for(i=0; i<=2*n*+1; i++) G[i].clear();
edges.clear();
for(i=1; i<=n; i++)
for(j=1; j<=n; j++)
{
scanf("%d",&c);
int p=(i-1)*n+j;
int q=p+n*n;
AddEdge(p,q,1,c);
AddEdge(p,q,k,0);
if(i!=n) AddEdge(q,p+n,k,0);//下
if(j!=n) AddEdge(q,p+1,k,0);//右
}
AddEdge(0,1,k,0);
AddEdge(2*n*n,2*n*n+1,k,0);
int ans=Mincost(0,2*n*n+1);
printf("%d\n",ans);
}
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
poj 3422 Kaka's Matrix Travels 最小费最大流
标签:
原文地址:http://blog.csdn.net/xinag578/article/details/47781601