对抗性潜在自动编码器(ALAE) -论文地址 https://arxiv.org/abs/2004.04467 -项目源码 https://github.com/podgorskiy/ALAE 摘要 自动编码器网络是无监督的方法,旨在通过同时学习编码器-生成器映射来结合生成性和代表性。尽管进行了广泛 ...
分类:
Web程序 时间:
2021-02-19 13:45:29
阅读次数:
0
花式解释AutoEncoder与VAE1什么是自动编码器自动编码器(AutoEncoder)最开始作为一种数据的压缩方法,其特点有:(1)跟数据相关程度很高,这意味着自动编码器只能压缩与训练数据相似的数据,这个其实比较显然,因为使用神经网络提取的特征一般是高度相关于原始的训练集,使用人脸训练出来的自动编码器在压缩自然界动物的图片是表现就会比较差,因为它只学习到了人脸的特征,而没有能够学习到自然界图
分类:
Web程序 时间:
2020-11-27 11:26:26
阅读次数:
10
译自:https://hjweide.github.io/adversarial-autoencoders 1.自编码器AE作为生成模型 我们已经简要提到过,编码器输出的属性使我们能够将输入数据转换为有用的表示形式。在使用变分自动编码器的情况下,解码器已受过训练,可以从类似于我们选择的先验样本的样本 ...
分类:
其他好文 时间:
2020-06-16 21:55:44
阅读次数:
218
在上一篇博客中我们介绍并实现了自动编码器,本文将用PyTorch实现变分自动编码器(Variational AutoEncoder, VAE)。自动变分编码器原理与一般的自动编码器的区别在于需要在编码过程增加一点限制,迫使它生成的隐含向量能够粗略的遵循标准正态分布。这样一来,当需要生成一张新图片时, ...
分类:
其他好文 时间:
2020-03-30 23:49:45
阅读次数:
281
生成对抗网络(Generative Adversarial Network, GAN)包括生成网络和对抗网络两部分。生成网络像自动编码器的解码器,能够生成数据,比如生成一张图片。对抗网络用来判断数据的真假,比如是真图片还是假图片,真图片是拍摄得到的,假图片是生成网络生成的。 生成对抗网络就是让生成网 ...
分类:
其他好文 时间:
2020-03-30 23:28:25
阅读次数:
298
概述 译自https://jaan.io/what is variational autoencoder vae tutorial/ 在讨论变分自动编码器时,为什么深度学习研究人员和概率机器学习人员会感到困惑? 什么是变体自动编码器? 为什么这个词会引起混乱? 这是因为神经网络和概率模型在基本概念和 ...
分类:
其他好文 时间:
2020-03-25 18:58:58
阅读次数:
259
论文地址:使用半监督堆栈式自动编码器实现包含记忆的人工带宽扩展 作者:Pramod Bachhav, Massimiliano Todisco and Nicholas Evans 博客作者:凌逆战 博客地址:https://www.cnblogs.com/LXP-Never/p/10889975. ...
分类:
Web程序 时间:
2020-02-24 13:29:00
阅读次数:
122
1.生成对抗网络 让两个网络相互竞争,通过生成网络来生成假的数据,对抗网络通过判别器判别真伪,最后希望生成网络生成的数据能够以假乱真骗过判别器 2.生成模型 在生成对抗网络中,不再是将图片输入编码器得到隐含向量然后生成图片,而是随机初始化一个隐含向量,根据变分自动编码器的特点,初始化一个正态分布的隐 ...
分类:
其他好文 时间:
2019-11-03 20:11:44
阅读次数:
108
深度自动编码器由两个对称的深度置信网络组成,其中一个深度置信网络通常有四到五个浅层,构成负责编码的部分,另一个四到五层的网络则是解码部分。 这些层都是受限玻尔兹曼机(RBM)(注:也可以采用自编码器预训练?),即构成深度置信网络的基本单元,它们有一些特殊之处,我们将在下文中介绍。以下是简化的深度自动 ...
分类:
其他好文 时间:
2019-07-25 00:47:32
阅读次数:
226
计算机视觉、自然语言处理和语音识别是目前深度学习领域很热门的三大应用方向。计算机视觉学习,推荐阅读《深度学习之PyTorch实战计算机视觉》。学到人工智能的基础概念及Python 编程技能,掌握PyTorch 的使用方法,学到深度学习相关的理论知识,比如卷积神经网络、循环神经网络、自动编码器,等等。 ...
分类:
其他好文 时间:
2019-06-04 19:10:46
阅读次数:
124