码迷,mamicode.com
首页 >  
搜索关键字:机器学习算法    ( 1077个结果
【机器学习算法-python实现】Adaboost的实现(1)-单层决策树(decision stump)
(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景      上一节学习支持向量机,感觉公式都太难理解了,弄得我有点头大。不过这一章的Adaboost线比较起来就容易得多。Adaboost是用元算法的思想进行分类的。什么事元算法的思想呢?就是根据数据集的不同的特征在决定结果时所占的比重来划分数据集。就是要对每个特征值都构建决策树,并且赋予他们不同的...
分类:编程语言   时间:2014-05-07 06:48:25    阅读次数:569
【机器学习算法-python实现】svm支持向量机(2)—简化版SMO算法
(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景知识       通过上一节我们通过引入拉格朗日乗子得到支持向量机变形公式。详细变法可以参考这位大神的博客——地址   参照拉格朗日公式F(x1,x2,...λ)=f(x1,x2,...)-λg(x1,x2...)。我们把上面的式子变型为:  约束条件就变成了: ...
分类:编程语言   时间:2014-05-04 18:14:34    阅读次数:401
【机器学习算法-python实现】svm支持向量机(1)—理论知识介绍
(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景        支持向量机SVM(support vector machines)。SVM是一种二值分类器,是近些年比较流行的一种分类算法。 本文,首先要介绍一些基本的知识概念,在下一章将对SVM进行简单地代码实现。 2.基本概念 (1)线性可分...
分类:编程语言   时间:2014-05-01 17:48:01    阅读次数:374
【机器学习算法-python实现】逻辑回归的实现(LogicalRegression)
(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景知识       在刚刚结束的天猫大数据s1比赛中,逻辑回归是大家都普遍使用且效果不错的一种算法。   (1)回归                先来说说什么是回归,比如说我们有两类数据,各有50十个点组成,当我门把这些点画出来,会有一条线区分这两组数据,我们拟合出这个曲线(因为很有可能是非...
分类:编程语言   时间:2014-04-30 22:15:39    阅读次数:454
【机器学习算法-python实现】扫黄神器-朴素贝叶斯分类器的实现
(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景      以前我在外面公司实习的时候,一个大神跟我说过,学计算机就是要一个一个贝叶斯公式的套用来套用去。嗯,现在终于用到了。朴素贝叶斯分类器据说是好多扫黄软件使用的算法,贝叶斯公式也比较简单,大学做概率题经常会用到。核心思想就是找出特征值对结果影响概率最大的项。公式如下:...
分类:编程语言   时间:2014-04-29 13:15:21    阅读次数:297
Advice for Applying Machine Learning & Machine Learning System Design----- Stanford Machine Learning(by Andrew NG)Course Notes
AdviceforapplyingmachinelearningDeciding what to try next 现在我们已学习了线性回归、逻辑回归、神经网络等机器学习算法,接下来我们要做的是高效地利用这些算法去解决实际问题,尽量不要把时间浪费在没有多大意义的尝试上,Advice for appl...
分类:移动开发   时间:2014-04-29 12:11:47    阅读次数:756
Mahout学习之Mahout简介、安装、配置、入门程序测试
一、Mahout简介 查了Mahout的中文意思——驭象的人,再看看Mahout的logo,好吧,想和小黄象happy地玩耍,得顺便陪陪这位驭象人耍耍了... 附logo: (就是他,骑在象头上的那个Mahout) 步入正文:        Mahout 是一个很强大的数据挖掘工具,是一个分布式机器学习算法的集合,包括:被称为Taste的分布式协同过滤的实现、分类、聚...
分类:其他好文   时间:2014-04-27 19:59:55    阅读次数:569
1077条   上一页 1 ... 106 107 108
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!