(转载请注明出处:http://blog.csdn.net/buptgshengod)1.背景 决策书算法是一种逼近离散数值的分类算法,思路比較简单,并且准确率较高。国际权威的学术组织,数据挖掘国际会议ICDM (the IEEE International Conference on Da...
分类:
编程语言 时间:
2014-06-26 22:33:33
阅读次数:
410
1、介绍 ?决策树(decision tree)是一种有监督的机器学习算法,是一个分类算法。在给定训练集的条件下,生成一个自顶而下的决策树,树的根为起点,树的叶子为样本的分类,从根到叶子的路径就是一个样本进行分类的过程。 ?下图为一个决策树的例子,见http://zh.wikipedia.org/w...
分类:
其他好文 时间:
2014-06-25 13:13:16
阅读次数:
172
spark1.0.0下使用scala实现机器学习算法,包括分类、回归、聚类、协同过滤以及降维等。
分类:
其他好文 时间:
2014-06-18 15:25:15
阅读次数:
346
1、介绍 ?决策树(decision tree)是一种有监督的机器学习算法,是一个分类算法。在给定训练集的条件下,生成一个自顶而下的决策树,树的根为起点,树的叶子为样本的分类,从根到叶子的路径就是一个样本进行分类的过程。 ?下图为一个决策树的例子,见http://zh.wikipedia.org/w...
分类:
其他好文 时间:
2014-06-17 13:17:44
阅读次数:
281
在理解了我们须要解决的机器学习问题之后,我们能够思考一下我们须要收集什么数据以及我们能够用什么算法。本文我们会过一遍最流行的机器学习算法,大致了解哪些方法可用,非常有帮助。机器学习领域有非常多算法,然后每种算法又有非常多延伸,所以对于一个特定问题,怎样确定一个正确的算法是非常困难的。本文中我想给你们...
分类:
其他好文 时间:
2014-06-07 21:27:22
阅读次数:
260
KNN最邻近规则,主要应用领域是对未知事物的识别,即判断未知事物属于哪一类,判断思想是,基于欧几里得定理,判断未知事物的特征和哪一类已知事物的的特征最接近;K最近邻(k-Nearest
Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果...
分类:
其他好文 时间:
2014-06-04 16:22:30
阅读次数:
399
机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering
算法,其主要工作在于求解一个非线性极小化问题。在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是
L-BFGS。为了解这个算法的数学机理,这几天做了一些调研,现把学习过程中理解的一些东西整理出来。目录链接....
分类:
其他好文 时间:
2014-06-02 07:30:03
阅读次数:
249
机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering
算法,其主要工作在于求解一个非线性极小化问题。在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是
L-BFGS。为了解这个算法的数学机理,这几天做了一些调研,现把学习过程中理解的一些东西整理出来。目录链接....
分类:
其他好文 时间:
2014-06-02 07:28:41
阅读次数:
197
机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering
算法,其主要工作在于求解一个非线性极小化问题。在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是
L-BFGS。为了解这个算法的数学机理,这几天做了一些调研,现把学习过程中理解的一些东西整理出来。目录链.....
分类:
其他好文 时间:
2014-06-02 07:28:03
阅读次数:
210
机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering
算法,其主要工作在于求解一个非线性极小化问题。在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是
L-BFGS。为了解这个算法的数学机理,这几天做了一些调研,现把学习过程中理解的一些东西整理出来。目录链接(...
分类:
其他好文 时间:
2014-06-02 07:27:27
阅读次数:
274