朴素贝叶斯分类 1,基本概念 2,算法流程 关键点:理解先验概率,条件概率,最大后验概率,下面是以极大似然估计的 3,算法改进(贝叶斯估计) 上述用极大似然估计可能会出现所要估计的概率值为0的情况,改进方法: 先验概率贝叶斯估计:K表示类别数,λ为参数:0时为极大似然估计;1时为拉普拉斯平滑 条件概 ...
分类:
其他好文 时间:
2017-09-02 20:48:16
阅读次数:
184
一、病人分类的例子 让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难。 某个医院早上收了六个门诊病人,如下表。 症状 职业 疾病 打喷嚏 护士 感冒 打喷嚏 农夫 过敏 头痛 建筑工人 脑震荡 头痛 建筑工人 感冒 打喷嚏 教师 感冒 头痛 教师 脑震荡 现在又来了第七个病人,是一个打 ...
分类:
其他好文 时间:
2017-08-25 18:15:46
阅读次数:
157
区别: 几种朴素贝叶斯分类器的区别在于对于分布的假设,即假设满足的形式。 一、高斯NB 导入 假设特征的似然函数满足, 和 采用“最大似然估计” 二、Multinomial NB 导入 特征是离散值,通常用样本的概率去估计 为避免有的特征值缺省,一般对样本的概率做Laplace平滑:(a=1时) 三 ...
分类:
其他好文 时间:
2017-08-22 00:19:05
阅读次数:
731
如果如今要构建一个网络图书馆,我们能够给新进来的书贴上若干个标签,没有机器学习算法的情况下,我们须要给这些书手动分类。是计算机类的呀,还是非计算机类的呀。是小说类的呀。还是非小说类的云云。 那么。我们能够通过让程序自己学习怎样通过一本书上的若干标签来进行图书类别的区分,这样就能够节省非常多人力,这也 ...
分类:
其他好文 时间:
2017-08-21 09:55:28
阅读次数:
169
书接上文 :从朴素贝叶斯分类器到贝叶斯网络(上) 三、贝叶斯网络贝叶斯网络(Bayesian Network)是一种用于表示变量间依赖关系的数据结构。有时它又被称为信念网络(Belief Network)或概率网络(Probability Network)。在统计学习领域。概率图模型(PGM,Pro ...
分类:
其他好文 时间:
2017-08-20 21:25:41
阅读次数:
347
1. Scikit-learn Scikit-learn 是基于Scipy为机器学习建造的的一个Python模块,他的特色就是多样化的分类,回归和聚类的算法包括支持向量机,逻辑回归,朴素贝叶斯分类器,随机森林,Gradient Boosting,聚类算法和DBSCAN。而且也设计出了Python n ...
分类:
编程语言 时间:
2017-08-16 14:06:01
阅读次数:
285
朴素贝叶斯分类是基于贝叶斯概率的思想,假设属性之间相互独立,求得各特征的概率,最后取较大的一个作为预测结果(为了消弱罕见特征对最终结果的影响,通常会为概率加入权重,在比较时加入阈值)。 ...
分类:
其他好文 时间:
2017-08-10 01:21:42
阅读次数:
206
# -*- coding: utf-8 -*- """ Created on Mon Aug 07 23:40:13 2017 @author: mdz """ import numpy as np def loadData(): vocabList=[['my', 'dog', 'has', 'f... ...
分类:
编程语言 时间:
2017-08-08 20:02:49
阅读次数:
240
贝叶斯定理: 其中: 表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。其基本求解公式为:。 ...
分类:
其他好文 时间:
2017-08-07 18:26:38
阅读次数:
103
这篇博客是关于机器学习中基于概率论的分类方法--朴素贝叶斯,内容包括朴素贝叶斯分类器,垃圾邮件分类,解析RSS源数据以及用朴素贝叶斯来分析不同地区的态度. ...
分类:
编程语言 时间:
2017-08-03 00:51:05
阅读次数:
202