码迷,mamicode.com
首页 >  
搜索关键字:人工智能 机器学习 资源分享    ( 12648个结果
数据挖掘之定义
大数据是2012的时髦词汇,正受到越来越多人的关注和谈论。大数据之所以受到人们的关注和谈论,是因为隐藏在大数据后面超千亿美元的市场机会。   大数据时代,数据挖掘是最关键的工作。以下内容供个人学习用,感兴趣的朋友可以看一下。   智库百科是这样描述数据挖掘的“数据挖掘又称数据库中的知识发现,是目前人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并...
分类:其他好文   时间:2014-05-09 22:46:58    阅读次数:338
数据挖掘之七种常用的方法
数据挖掘又称数据库中的知识发现,是目前人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程  利用数据挖掘进行数据分...      数据挖掘又称数据库中的知识发现,是目前人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程      利用数据...
分类:其他好文   时间:2014-05-09 22:02:10    阅读次数:241
机器学习中的规则化范数(L0, L1, L2, 核范数)
目录:一、L0,L1范数二、L2范数三、核范数今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化。我们先简单的来理解下常用的L0、L1、L2和核范数规则化。最后聊下规则化项参数的选择问题。这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文。知识有限,以下都是我一些浅显的看法,...
分类:其他好文   时间:2014-05-09 11:29:41    阅读次数:793
毕业课题思考记录
用这篇日志记录在做毕业课题的一些思考,按时间分割。2014/02至2014/04: 抽了一些时间,看林轩田老师的《机器学习基石》,大致对机器学习、数据挖掘有了一个认识,数据挖掘更侧重于挖掘大量或潜在的数据,从而对一些问题进行分析,机器学习则是通过大量已知数据的训练,形成机器的思维,从而“学会”对.....
分类:其他好文   时间:2014-05-09 10:14:27    阅读次数:289
梯度下降算法(Gradient Descent)
最近在搞论文,需要用梯度下降算法求解,所以重新整理分享在这里。主要包括梯度介绍、公式求导、学习速率选择、代码实现。 梯度下降的性质: 1.求得的解和选取的初始点有关 2.可以保证找到局部最优解,因为梯度最终会减小为0,即步长会自动越来越小。 梯度简介 一个多元函数的在某点的梯度方向是函数值在该点增长最快的方向,即方向导数取最大值的方向。 问题描述公式求导学习率选择 假...
分类:其他好文   时间:2014-05-07 07:05:49    阅读次数:287
【机器学习算法-python实现】Adaboost的实现(1)-单层决策树(decision stump)
(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景      上一节学习支持向量机,感觉公式都太难理解了,弄得我有点头大。不过这一章的Adaboost线比较起来就容易得多。Adaboost是用元算法的思想进行分类的。什么事元算法的思想呢?就是根据数据集的不同的特征在决定结果时所占的比重来划分数据集。就是要对每个特征值都构建决策树,并且赋予他们不同的...
分类:编程语言   时间:2014-05-07 06:48:25    阅读次数:569
【机器学习算法-python实现】svm支持向量机(3)—核函数
(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景知识     前面我们提到的数据集都是线性可分的,这样我们可以用SMO等方法找到支持向量的集合。然而当我们遇到线性不可分的数据集时候,是不是svm就不起作用了呢?这里用到了一种方法叫做核函数,它将低维度的数据转换成高纬度的从而实现线性可分。      可能有的人不明白为什么低维度的数据集转换成高...
分类:编程语言   时间:2014-05-07 03:39:44    阅读次数:455
如何选择机器学习算法
How do you know what machine learning algorithm to choose for your classification problem? Of course, if you really care about accuracy, your best bet...
分类:其他好文   时间:2014-05-07 00:50:14    阅读次数:438
机器学习算法中的偏差-方差权衡(Bias-Variance Tradeoff)
简单的以下面曲线拟合例子来讲:直线拟合后,相比原来的点偏差最大,最后一个图完全拟合了数据点偏差最小;但是拿第一个直线模型去预测未知数据,可能会相比最后一个模型更准确,因为最后一个模型过拟合了,即第一个模型的方差比最后一个模型小。一般而言高偏差意味着欠拟合,高方差意味着过拟合。他们之间有如下的关系: ...
分类:其他好文   时间:2014-05-07 00:28:40    阅读次数:946
【机器学习算法-python实现】svm支持向量机(2)—简化版SMO算法
(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景知识       通过上一节我们通过引入拉格朗日乗子得到支持向量机变形公式。详细变法可以参考这位大神的博客——地址   参照拉格朗日公式F(x1,x2,...λ)=f(x1,x2,...)-λg(x1,x2...)。我们把上面的式子变型为:  约束条件就变成了: ...
分类:编程语言   时间:2014-05-04 18:14:34    阅读次数:401
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!