贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。也就是说,贝叶斯分类器是最小错误率意义上的优化,它遵循“多数占优”这一基本原则。...
分类:
其他好文 时间:
2015-03-30 18:47:02
阅读次数:
312
那几年,我学习机器学习的主要内容:
1.机器学习基本导论,机器学习入门了解;
2.线性回归与Logistic。xx业绩预测系统,智能交互统计系统等;
3.岭回归,Lasso,变量选择技术。维度的技巧等技术;
4.降维技术。xx指标设计,具体规范;
5.线性分类器,Knn算法,朴素贝叶斯分类器,文本挖掘。XX智能垃圾消息,垃圾邮件判断,评论智能分析,智能监控统计预警系统呀。
6.决策树,组合提升算...
分类:
其他好文 时间:
2015-03-20 14:27:55
阅读次数:
168
本博客所有文章分类的总目录链接:http://www.cnblogs.com/asxinyu/p/4288836.html1.微软Infer.NET机器学习组件目录1.Infer.NET连载(一)介绍2.Infer.NET连载(二)贝叶斯分类器例子后续继续更新中。。如文章链接打开有误,请关注博客,因...
分类:
Web程序 时间:
2015-03-11 16:25:30
阅读次数:
170
1 # -*- coding: utf-8 -*- 2 ''' 3 >>> c = Classy() 4 >>> c.train(['cpu', 'RAM', 'ALU', 'io', 'bridge', 'disk'], 'architecture') 5 True 6 >>> c....
分类:
编程语言 时间:
2015-03-06 23:33:42
阅读次数:
216
朴素贝叶斯算法是寻找一个极大后验假设(MAP),即候选假设的最大后验概率。
如下:
在朴素贝叶斯分类器中,假设样本特征之间是独立的,则有:
计算每个假设的后验概率,选出最大的概率,对应的类别就是样本的分类结果。
优缺点:
对小规模的数据表现很好,适合多分类任务,适合增量式训练。当时,需要样本的特征之间独立性较高,不能有太多的相关性。对输入数据的表达形式很敏...
分类:
编程语言 时间:
2015-03-02 11:19:44
阅读次数:
297
1.朴素贝叶斯概率模型的数学实质:独立条件概率。 朴素在这里的含义就是各影响因子概率发生独立。2.朴素贝叶斯分类器的数学模型:条件概率模型P(C|F1F2...Fn)=P(C)P(F1F2...Fn|C)/P(F1F2...Fn) (1)这里Fn代表的是独立变量C的若干个特征变量(影响因子)。我们知...
分类:
其他好文 时间:
2015-02-11 18:08:30
阅读次数:
204
朴素贝叶斯分类器是用来做分类的一个简便方法。在贝叶斯公式的基础上,引人条件独立的假设,使得贝叶斯分类器具有简单易行的优点和假设时常与实际不符的缺点。下面简单介绍一下朴素贝叶斯分类器。 首先规定一下数据格式:输入的每一个样本为${{x}^{i}},{{c}^{i}}$,其中:$i$为样本编号,$...
分类:
其他好文 时间:
2015-02-06 21:40:19
阅读次数:
147
Infer.NET是一个概率图模型中(graphical models)用于运行贝叶斯推理机(Bayesian inference)的框架,本文将介绍一个基于Infer.NET构建贝叶斯机器分类器的例子,并用于根据身高体重预测性别的例子中。
分类:
Web程序 时间:
2015-01-29 09:15:44
阅读次数:
215
最近一段时间,正在学习机器学习与模式识别,为了验证算法,仍然用了之前做过的项目的一些图片作为数据采集的样本,进行数据采集。前段时间,做了一个花生籽粒的识别程序,是基于SVM+HOG的,这次则是采用朴素贝叶斯来进行识别。采集了20个品种,每个品种50个样本,共1K个数据。
朴素贝叶斯分类器(Naive Bayes Classifier,或 NBC)发源于古典数学理论,有着坚实的数学基础,以及稳...
分类:
其他好文 时间:
2015-01-27 20:25:03
阅读次数:
224
贝叶斯分类器 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。眼下研究较多的贝叶斯分类器主要有四种,各自是:Naive Bayes、TAN、BAN和GBN。 贝叶斯网络是一个带有概率...
分类:
编程语言 时间:
2015-01-21 14:57:37
阅读次数:
405