码迷,mamicode.com
首页 >  
搜索关键字:分法    ( 1815个结果
决策树详解
针对当前很多资料对常用决策树归纳程度不够,且很多细节问题没有覆盖到的情况,本文尽量通过作者自己的理解进行了阐述,从自己对决策树认识加深的过程中提出问题并做出解答。 ...
分类:其他好文   时间:2020-03-11 10:57:11    阅读次数:61
二分法求最大组合数问题
...
分类:其他好文   时间:2020-03-10 16:07:30    阅读次数:36
软件测试用例设计方法
从理论层面来讲,设计用例的方法有很多,比如等价类划分法、边界值分析法、错误推测方法、因果图方法、判定表驱动分析法、正交实验设计方法、功能图分析方法、场景设计方法、形式化方法、扩展有限状态机方法等等,但是真正具有实用价值并且常用的只有前三种方法; 第一,等价类划分方法 等价类划分法将程序所有可能的输入 ...
分类:其他好文   时间:2020-03-08 17:27:46    阅读次数:81
33. 搜索旋转排序数组
力扣👈 假设按照升序排序的数组在预先未知的某个点上进行了旋转。 ( 例如,数组 [0,1,2,4,5,6,7] 可能变为 [4,5,6,7,0,1,2] )。 搜索一个给定的目标值,如果数组中存在这个目标值,则返回它的索引,否则返回 -1 。 你可以假设数组中不存在重复的元素。 你的算法时间复杂度 ...
分类:编程语言   时间:2020-03-07 15:55:19    阅读次数:79
三分法求最值简介
算法介绍 + 算法简介:三分法适用于以O($logn$)复杂度求解单峰函数的最值,平均每次舍去$1/3$的定义域。 + 适用条件: 1. 有界性:有明确的初始定义域。 2. 单峰性:仅存在一个目标最值,且最值两侧的函数单调。 (注:二分法用于求解单调函数零点,三分法用于求解单峰函数最值,二者思想相似 ...
分类:其他好文   时间:2020-03-05 20:42:02    阅读次数:87
二分查找法
二分法:输入必须是一个有序的元素列表 最多需要log2^n步(对数):将2^n=x(假如列表包含8个元素,2^n=8 n=3,最多需要3步可以找到该元素) 练习: 1.假设有一个包含128个名字的有序列表,你要使用二分查找在其中查找一个名字,请 问最多需要几步才能找到?(7步 2^7=128) 2. ...
分类:其他好文   时间:2020-03-05 13:42:49    阅读次数:129
二分法查找
随机产生15个不想等的[0,100]之间的随机数,对这15个数从小到大排序,然后应用二分法查找34是否在这15个随机数里边 1 function random(num) { 2 var arr = [] 3 while(arr.length < num) { 4 var num = Math.flo ...
分类:其他好文   时间:2020-03-04 19:00:34    阅读次数:52
二分法查找
如果我们只是为了确定这个查找的目标在列表中,在递归实现的方式中,可以直接使用列表的长度len(),来新建新的列表,如果需要找到对应的坐标就需要在原有的列表上利用对应的下标进行切片,这样就可以定位元素的下标 def search(li, item, low=0, height=None): '''递归 ...
分类:其他好文   时间:2020-03-04 14:47:33    阅读次数:68
算法竞赛专题解析(1):二分法、三分法
本系列是这本算法教材的扩展资料: "《算法竞赛入门到进阶》" . 罗勇军、郭卫斌. 清华大学出版社 本文web地址: PDF下载地址: 其中的“补充资料” 如有建议,请联系:(1)QQ 群,567554289;(2)作者QQ,15512356 [toc] 二分法和三分法是算法竞赛中常见的算法思路,本 ...
分类:编程语言   时间:2020-03-04 11:10:55    阅读次数:216
Codeforces Round #593 (Div. 2) B. Alice and the List of Presents
"Link" 题意: $n$ 种礼物分配给 $m$ 个盒子 每种礼物有无限个,每个盒子至多拥有同种礼物一个并保证每种礼物至少被分配一次 思路: 求组合数 $present_1$ 总共 $2^{m 1}$ 种分法 根据乘法原理 $n$ 个 $present$ 共有 ${2^{m 1}}^n$ 种分法 ...
分类:其他好文   时间:2020-03-02 22:58:00    阅读次数:77
1815条   上一页 1 ... 13 14 15 16 17 ... 182 下一页
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!