1.贝叶斯分类的基础——贝叶斯定理
已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。这里先解释什么是条件概率:
表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。其基本求解公式为:
。
贝叶斯定理...
分类:
编程语言 时间:
2015-07-21 14:46:43
阅读次数:
121
贝叶斯定理(英语:Bayes’ theorem)是概率论中的一个定理,它跟随机变量的条件概率以及边缘概率分布有关。在有些关于概率的解说中,贝叶斯定理(贝叶斯更新)能够告知我们如何利用新证据修改已有的看法。这个名称来自于托马斯?贝叶斯。
通常,事件A在事件B(发生)的条件下的概率,与事件B在事件A的条件下的概率是不一样的;然而,这两者是有确定的关系,贝叶斯定理就是这种关系的陈述。贝叶斯公式的用途...
分类:
其他好文 时间:
2015-07-02 22:40:24
阅读次数:
168
贝叶斯分类算法是统计学的一种分类方法,它是一类利用概率统计知识进行分类的算法。在许多场合,朴素贝叶斯(Naïve Bayes,NB)分类算法可以与决策树和神经网络分类算法相媲美,该算法能运用到大型数据库中,而且方法简单、分类准确率高、速度快。
由于贝叶斯定理假设一个属性值对给定类的影响独立于其它属性的值,而此假设在实际情况中经常是不成立的,因此其分类准确率可能会下降。为此,就衍生出许多降低独立性假设的贝叶斯分类算法,如TAN(tree augmented Bayes network)算法。...
分类:
编程语言 时间:
2015-06-23 00:54:23
阅读次数:
1514
1.1、摘要 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本文作为分类算法的第一篇,将首先介绍分类问题,对分类问题进行一个正式的定义。然后,介绍贝叶斯分类算法的基础——贝叶斯定理。最后,通过实例讨论贝叶斯分类中最简单的一种:朴素贝叶斯分类。1.2、分类问题综述 ...
分类:
其他好文 时间:
2015-06-12 13:23:32
阅读次数:
84
贝叶斯分类 贝叶斯分类原理 基于贝叶斯定理是在18世纪提出来的,经过近300年的发展贝叶斯相关理论已经发展的较为成熟,其中贝叶斯分类算法在邮件过滤领域中被广泛应用。 贝叶斯的分类的关键在与概率推论,在各种不确定的田间下,通过变量出现的在所属分类的概率,在一定的阀值下确定分类。分类器基于这样一个假设:...
分类:
其他好文 时间:
2015-05-19 20:54:45
阅读次数:
186
证据权法是通过计算和利用各种不同证据的权重(表示相对重要性)并将多种证据结合起来,预测某个时间是否会发生的一种方法证据权法以概率论中的贝叶斯定理为基础。设D表示要一个随机事件。用P(D)表示这一事件概率,即D发生的概率。假设P(D)事先知道,即它是先验概率。则D不发生的概率为:定义: 称为事件D的....
引言朴素贝叶斯由贝叶斯定理延伸而来的简单而强大的概率模型,它根据每个特征的概率确定一个对象属于某一类别的概率。该方法基于一个假设,所有特征需要相互独立,即任一特征的值和其他特征的值没有关联关系。
虽然这种条件独立的假设在许多应用领域未必能很好满足,甚至是不成立的。但这种简化的贝叶斯分类器在许多实际应用中还是得到了较好的分类精度。训练模型的过程可以看作是对相关条件概率的计算,它可以用统计对应某一类别...
分类:
其他好文 时间:
2015-05-03 23:43:54
阅读次数:
298
1.1朴素贝叶斯公式
贝叶斯定理:
其中A为事件,B为类别,P(B|A)为事件A条件下属于B类别的概率。
朴素贝叶斯分类的正式定义如下:
1、设为一个待分类项,而每个a为x的一个特征属性。
2、有类别集合。
3、计算。
4、如果,则 。
那么现在的关键就是如何计算第3步中的各个条件概率:
...
分类:
其他好文 时间:
2015-04-29 13:41:27
阅读次数:
302
前言 鉴于机器学习产生自计算机科学,图像识别却起源于工程学。然而,这些活动能被看做同一个领域的两个方面,并且他们同时在这过去的十年间经历了本质上的发展。特别是,当图像模型已经作为一个用来描述和应用概率模型的框架出现时,贝叶斯定理(Bayesian methods)就已经从一个专家级别的知识范畴发展....
分类:
系统相关 时间:
2015-04-29 00:19:43
阅读次数:
324
上一节我们介绍了监督学习的整体框架和基本的要点,按照总分的思考方式,接下来我们要分别介绍相应的一些算法了。今天这节我们来看看贝叶斯定理在机器学习中的应用。本章要点如下:1.贝叶斯定理;2.分类中的贝叶斯定理;3.风险和效用度量;4.关联规则;一、贝叶斯定理贝叶斯定..
分类:
其他好文 时间:
2015-04-28 12:09:28
阅读次数:
187