码迷,mamicode.com
首页 >  
搜索关键字:随机梯度下降    ( 172个结果
随机梯度下降的技术细节
本文是关于用SGD解如下四个问题\begin{align*} \mbox{SVM}: & \ \ \min_{\boldsymbol{w}} \ \frac{\lambda}{2} \|\boldsymbol{w}\|_2^2 + \frac{1}{M} \sum_{m=1}^M \max (0.....
分类:其他好文   时间:2015-01-28 06:08:01    阅读次数:167
线性回归和局部加权线性回归
线性回归算法优缺点:优点:结果易于理解,计算不复杂缺点:对非线性数据拟合不好适用数据类型:数值型和标称型算法思想:这里是采用了最小二乘法计算(证明比较冗长略去)。这种方式的优点是计算简单,但是要求数据矩阵X满秩,并且当数据维数较高时计算很慢;这时候我们应该考虑使用梯度下降法或者是随机梯度下降(同Lo...
分类:其他好文   时间:2014-12-06 01:21:06    阅读次数:892
随机梯度下降的逻辑回归算法(SGDLR)
由于第一次实验的实验报告不在这台机器,先写这一算法吧。SGDLR(the Stochastic Gradient Descent for Logistic Regression),要讲解这一算法,首先要把名字拆为几块。1 随机 2 梯度下降 3逻辑回归先贴一篇文章:http://blog.csdn....
分类:编程语言   时间:2014-10-31 21:53:01    阅读次数:389
梯度下降法和随机梯度下降法的区别
这几天在看《统计学习方法》这本书,发现 梯度下降法在 感知机 等机器学习算法中有很重要的应用,所以就特别查了些资料。 一.介绍 梯度下降法(gradient descent)是求解无约束最优化问题的一种常用方法,有实现简单的优点。梯度下降法是迭代算法,每一步需要求解目标函数的梯度向量。二.应用...
分类:其他好文   时间:2014-10-30 20:54:29    阅读次数:895
Factorization Machines 学习笔记(四)学习算法
最近学习了一种叫做 Factorization Machines(简称 FM)的通用算法,它可对任意的实值向量进行预测。其主要优点包括: 1) 可用于高度稀疏数据场景; 2) 具有线性的计算复杂度。本文将对 FM 框架进行简单介绍,并对其训练算法 — 随机梯度下降(SGD)法和交替最小二乘(ALS)法进行详细推导。...
分类:编程语言   时间:2014-10-28 12:23:27    阅读次数:342
Factorization Machines 学习笔记(三)回归和分类
最近学习了一种叫做 Factorization Machines(简称 FM)的通用算法,它可对任意的实值向量进行预测。其主要优点包括: 1) 可用于高度稀疏数据场景; 2) 具有线性的计算复杂度。本文将对 FM 框架进行简单介绍,并对其训练算法 — 随机梯度下降(SGD)法和交替最小二乘(ALS)法进行详细推导。...
分类:系统相关   时间:2014-10-28 12:22:05    阅读次数:335
Factorization Machines 学习笔记(一)预测任务
最近学习了一种叫做 Factorization Machines(简称 FM)的通用算法,它可对任意的实值向量进行预测。其主要优点包括: 1) 可用于高度稀疏数据场景; 2) 具有线性的计算复杂度。本文将对 FM 框架进行简单介绍,并对其训练算法 — 随机梯度下降(SGD) 法和交替最小二乘法(ALS)法进行详细推导。...
分类:系统相关   时间:2014-10-28 12:21:35    阅读次数:333
Factorization Machines 学习笔记(二)模型方程
最近学习了一种叫做 Factorization Machines(简称 FM)的通用算法,它可对任意的实值向量进行预测。其主要优点包括: 1) 可用于高度稀疏数据场景; 2) 具有线性的计算复杂度。本文将对 FM 框架进行简单介绍,并对其训练算法 — 随机梯度下降(SGD)法和交替最小二乘(ALS)法进行详细推导。...
分类:系统相关   时间:2014-10-28 12:21:25    阅读次数:371
【转】 随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )的公式对比、实现对比
梯度下降(GD)是最小化风险函数、损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正。下面的h(x)是要拟合的函数,J(theta)损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合...
分类:其他好文   时间:2014-10-16 00:17:11    阅读次数:415
172条   上一页 1 ... 14 15 16 17 18 下一页
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!