聚类分析是在数据中发现数据对象之间的关系,将数据进行分组,组内的相似性越大,组间的差别越大,则聚类效果越好。 此次我们学习聚类中的第一个算法——K-均值算法。K-均值算法本质就是重复将样本分配的类里面,不断的更新类的重心位置。 这里将围绕K-均值算法讨论目标优化、随机初始化和如何选择聚类数。 K-M ...
分类:
编程语言 时间:
2019-08-16 00:44:50
阅读次数:
112
决策树(Decision Tree)是一种非参数的有监督学习方法,它能够从一系列有特征和标签的数据中总结出决策规则,并用树状图的结构来呈现这些规则,以解决分类和回归问题。决策树尤其在以数模型为核心的各种集成算法中表现突出。开放平台:Jupyter lab根据菜菜的sklearn课堂实效生成一棵决策树 ...
分类:
编程语言 时间:
2019-08-14 19:59:27
阅读次数:
153
PASCAL VOC为图像识别和分类提供了一整套标准化的优秀的数据集,从2005年到2012年每年都会举行一场图像识别challenge。该挑战的主要目的是识别真实场景中一些类别的物体。在该挑战中,这是一个监督学习的问题,训练集以带标签的图片的形式给出。这些物体包括20类: Person: pers ...
分类:
其他好文 时间:
2019-08-14 14:40:19
阅读次数:
104
一、原理阐述 算法类型:监督学习_分类算法 输入:数值型或标称型(标称型需要独热编码) V1.0 用回归方式解决二分类问题,通过引入一个Sigmoid函数将中间y值映射到实际二分类的y值上。 二、算法选择 三、算法过程 1.Sigmoid函数是一个x值域是(-∞,+∞),y值域是(0,1)的单调递增 ...
分类:
编程语言 时间:
2019-08-13 20:12:20
阅读次数:
75
用通俗的语言讲解涵盖算法模型的机器学习,主要内容包括机器学习通用概念、三个基本科学计算工具、有监督学习、聚类模型、降维模型、隐马尔可夫模型、贝叶斯网络、自然语言处理、深度学习、强化学习、模型迁移等。在深入浅出地解析模型与算法之后,介绍使用Python相关工具进行开发的方法、解析经典案例,能理解、能设 ...
分类:
其他好文 时间:
2019-08-11 09:18:05
阅读次数:
4754
(1)涉及到的算法 1.监督学习:线性回归,逻辑回归,神经网络,SVM。 线性回归(下面第三行x0(i)其实是1,可以去掉) 逻辑回归 神经网络(写出前向传播即可,反向框架会自动计算) SVM 2.非监督学习:聚类算法(K-mean),降维(PCA) K-mean PCA 3.异常检测 4.推荐系统 ...
分类:
其他好文 时间:
2019-08-02 20:16:08
阅读次数:
82
13.1无监督学习:简介 将没有标签的样本分成不同的集合(簇),这种算法叫做聚类。常用的领域有市场分割、社交网络分析、计算机集群管理、了解星系等。 13.2K-均值算法 (1)K-均值是最普及的聚类算法,是一种迭代算法,假设需要将数据聚类成n个组,这时候首先随机选择K个点,称为聚类中心。 将每个样本 ...
分类:
其他好文 时间:
2019-08-02 10:30:24
阅读次数:
87
支持向量机是数据挖掘中的一项新技术,是借助于最优化方法来解决机器学习问题的新工具,它在解决小样本、非线性以及高维度模式识别中表现出许多优势,并能够推广应用到函数拟合等其他机器学习问题中。支持向量机是一类按监督学习方式对数据进行二元分类的广义线性分类器,其目的就是通过对学习样本来求解最大间隔的超平面。 ...
分类:
系统相关 时间:
2019-08-01 22:42:57
阅读次数:
375
Deep Active Learning 最上方为监督学习,对面为非监督学习,之间包括增强学习、半监督学习、在线学习、主动学习。 Supervised Learing 将未标记的数据交给Work进行标记,然后将标记数据交给Learner进行训练。 Semi-Supervised Learning 在 ...
分类:
其他好文 时间:
2019-07-31 16:50:48
阅读次数:
825