最近在做组装稻瘟病的基因组。 估计的基因组大小为40M。 由于没有参考基因组,进行de
novo assembly。 用HGAP策略。需要的有用的pacbio数据量应为400M左右, 选用的seed read 最小长度为6K,
seed的覆盖度应在20倍左右。拼接流程为:1,filtering. 2...
分类:
其他好文 时间:
2014-06-16 10:59:10
阅读次数:
424
1.Personalization
Includes:Recommending、Filtering、Predicting。 a)Non-Personalized b)Content-Based
c)Collaborative Filtering: User-Based d)Cold-Start Pr...
分类:
其他好文 时间:
2014-06-07 03:26:49
阅读次数:
338
机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering
算法,其主要工作在于求解一个非线性极小化问题。在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是
L-BFGS。为了解这个算法的数学机理,这几天做了一些调研,现把学习过程中理解的一些东西整理出来。目录...
分类:
其他好文 时间:
2014-06-02 07:31:21
阅读次数:
227
机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering
算法,其主要工作在于求解一个非线性极小化问题。在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是
L-BFGS。为了解这个算法的数学机理,这几天做了一些调研,现把学习过程中理解的一些东西整理出来。目录链接....
分类:
其他好文 时间:
2014-06-02 07:30:03
阅读次数:
249
机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering
算法,其主要工作在于求解一个非线性极小化问题。在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是
L-BFGS。为了解这个算法的数学机理,这几天做了一些调研,现把学习过程中理解的一些东西整理出来。目录链接....
分类:
其他好文 时间:
2014-06-02 07:28:41
阅读次数:
197
机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering
算法,其主要工作在于求解一个非线性极小化问题。在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是
L-BFGS。为了解这个算法的数学机理,这几天做了一些调研,现把学习过程中理解的一些东西整理出来。目录链.....
分类:
其他好文 时间:
2014-06-02 07:28:03
阅读次数:
210
机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering
算法,其主要工作在于求解一个非线性极小化问题。在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是
L-BFGS。为了解这个算法的数学机理,这几天做了一些调研,现把学习过程中理解的一些东西整理出来。目录链接(...
分类:
其他好文 时间:
2014-06-02 07:27:27
阅读次数:
274
在Network Packet Filtering
Framework(Netfilter)一节中还有两个额外的配置节——Core Netfilter
Configuration(核心Netfilter配置)和IP:Netfilter Configuration(IP:Netfilter配置)。1....
分类:
Web程序 时间:
2014-05-25 22:17:30
阅读次数:
487
1.算法简介
协同过滤(collaborative filtering)的核心思想:利用其他用户的行为来预测当前用户。协同过滤算法是推荐系统中最基本的,同时在业界广为使用。根据使用的方法不同,可以分为基于用户(user-based)、基于物品(item-based)的最近邻推荐。
基于用户的最近邻推荐的主要思想:对于一个给定的评分集,找出与当前用户u口味相近的k个用户;然后,对...
分类:
其他好文 时间:
2014-05-24 17:59:03
阅读次数:
308
1.算法简介协同过滤(collaborative
filtering)的核心思想:利用其他用户的行为来预测当前用户。协同过滤算法是推荐系统中最基本的,同时在业界广为使用。根据使用的方法不同,可以分为基于用户(user-based)、基于物品(item-based)的最近邻推荐。基于用户的最近邻推荐的...
分类:
其他好文 时间:
2014-05-24 13:23:43
阅读次数:
392