作者:[已重置]链接:https://www.zhihu.com/question/40546280/answer/88539689来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 SMO(Sequential Minimal Optimization)是针对求解SVM ...
分类:
编程语言 时间:
2017-08-23 20:46:13
阅读次数:
152
非常久之前就学了SVM,总认为不就是找到中间那条线嘛,但有些地方模棱两可,真正编程的时候又是一团浆糊。參数任意试验,毫无章法。既然又又一次学到了这一章节,那就要把之前没有搞懂的地方都整明确,嗯~ 下面使用到的图片来自上海交大杨旸老师的课件。网址例如以下:http://bcmi.sjtu.edu.cn ...
分类:
其他好文 时间:
2017-08-15 19:56:00
阅读次数:
207
在支持向量机模型的求解中,我们用到了SMO算法来求解向量α。那么什么是SMO算法?在讲SMO算法之前。我们须要先了解下面坐标上升法。 1、坐标上升法 如果有优化问题: W是α向量的函数。利用坐标上升法(当然,求目标函数的最小时即为坐标下降法)求解问题最优的步骤例如以下: 算法的思想为:每次仅仅考虑一 ...
分类:
编程语言 时间:
2017-07-24 09:58:08
阅读次数:
204
支持向量机原理(一) 线性支持向量机 支持向量机原理(二) 线性支持向量机的软间隔最大化模型 支持向量机原理(三)线性不可分支持向量机与核函数 支持向量机原理(四)SMO算法原理 支持向量机原理(五)线性支持回归 在前四篇里面我们讲到了SVM的线性分类和非线性分类,以及在分类时用到的算法。这些都关注 ...
分类:
其他好文 时间:
2017-04-07 18:30:01
阅读次数:
278
支持向量机原理(一) 线性支持向量机 支持向量机原理(二) 线性支持向量机的软间隔最大化模型 支持向量机原理(三)线性不可分支持向量机与核函数 支持向量机原理(四)SMO算法原理 支持向量机原理(五)线性支持回归 在SVM的前三篇里,我们优化的目标函数最终都是一个关于αα向量的函数。而怎么极小化这个 ...
分类:
编程语言 时间:
2017-04-07 18:26:42
阅读次数:
262
SVM -支持向量机原理详解与实践之四 SVM原理分析 SMO算法分析 SMO即Sequential minmal optimization, 是最快的二次规划的优化算法,特使对线性SVM和稀疏数据性能更优。在正式介绍SMO算法之前,首先要了解坐标上升法。 坐标上升法(Coordinate asce ...
分类:
其他好文 时间:
2017-03-14 23:53:40
阅读次数:
262
转自http://blog.csdn.net/zouxy09/article/details/17292011 终于到SVM的实现部分了。那么神奇和有效的东西还得回归到实现才可以展示其强大的功力。SVM有效而且存在很高效的训练算法,这也是工业界非常青睐SVM的原因。 前面讲到,SVM的学习问题可以转 ...
分类:
编程语言 时间:
2017-03-13 11:28:14
阅读次数:
325
1. 前言 最近又重新复习了一遍支持向量机(SVM)。其实个人感觉SVM整体可以分成三个部分: 1. SVM理论本身:包括最大间隔超平面(Maximum Margin Classifier),拉格朗日对偶(Lagrange Duality),支持向量(Support Vector),核函数(Kern ...
分类:
编程语言 时间:
2017-02-26 19:12:41
阅读次数:
598
支持向量机原理(一) 线性支持向量机 支持向量机原理(二) 线性支持向量机的软间隔最大化模型 支持向量机原理(三)线性不可分支持向量机与核函数 支持向量机原理(四)SMO算法原理 支持向量机原理(五)线性支持回归(待填坑) 在SVM的前三篇里,我们优化的目标函数最终都是一个关于\alpha向量的函数 ...
分类:
编程语言 时间:
2016-11-29 07:26:26
阅读次数:
280
支持向量机原理(一) 线性支持向量机 支持向量机原理(二) 线性支持向量机的软间隔最大化模型 支持向量机原理(三)线性不可分支持向量机与核函数 支持向量机原理(四)SMO算法原理(待填坑) 支持向量机原理(五)线性支持回归(待填坑) 在前面两篇我们讲到了线性可分SVM的硬间隔最大化和软间隔最大化的算 ...
分类:
其他好文 时间:
2016-11-26 13:47:31
阅读次数:
363