转:http://www.cnblogs.com/guangmingyixuan/p/3418869.html 在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很 ...
分类:
其他好文 时间:
2016-04-24 18:51:52
阅读次数:
233
文章提出一个从数据中训练得到相似性度量的方法。针对类别较多但每个类别的样本较少的情况,这个方法有用。这个方法的思想是:学习一个能够将输入特征映射到一个目标空间的函数,在这个目标空间中用一个L1范数来度量输入空间的“距离”,通过最小化loss函数以实现最小化同一类和最大化不同类的“距离”。映射的函数不...
分类:
移动开发 时间:
2015-11-19 19:07:25
阅读次数:
223
在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。 本文的目的就是对常用的相似性度量作一个总结。本文目录:1. 欧氏距离2. .....
分类:
其他好文 时间:
2015-09-17 07:38:59
阅读次数:
223
原文:http://blog.csdn.net/shiwei408/article/details/7602324在做分类时常常需要估算不同样本之间的相似性度量(SimilarityMeasurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很...
分类:
其他好文 时间:
2015-09-16 00:51:55
阅读次数:
177
1、余弦距离余弦距离,也称为余弦相似度,是用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小的度量。向量,是多维空间中有方向的线段,如果两个向量的方向一致,即夹角接近零,那么这两个向量就相近。而要确定两个向量方向是否一致,这就要用到余弦定理计算向量的夹角。余弦定理描述了三角形中任何一个夹角...
分类:
其他好文 时间:
2015-08-11 18:27:14
阅读次数:
128
在分类聚类算法,推荐系统中,常要用到两个输入变量(通常是特征向量的形式)距离的计算,即相似性度量.不同相似性度量对于算法的结果,有些时候,差异很大.因此,有必要根据输入数据的特征,选择一种合适的相似性度量方法.令X=(x1,x2,..,xn)T,Y=(y1,y2,...yn)T为两个输入向量,1.欧...
分类:
其他好文 时间:
2015-08-09 15:27:47
阅读次数:
178
在分类聚类算法,推荐系统中,常要用到两个输入变量(通常是特征向量的形式)距离的计算,即相似性度量.不同相似性度量对于算法的结果,有些时候,差异很大.因此,有必要根据输入数据的特征,选择一种合适的相似性度量方法。
令X=(x1,x2,..,xn)T,Y=(y1,y2,...yn)T为两个输入向量,
1.欧几里得距离(Euclidean distance)-EuclideanDistance...
分类:
其他好文 时间:
2015-07-12 23:23:09
阅读次数:
957
机器学习中的相似性度量在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。 本文的目的就是对常用的相似性度量作一个总结。本文目录:....
分类:
其他好文 时间:
2015-06-13 17:00:35
阅读次数:
101
原文来自:http://blog.csdn.net/shiwei408/article/details/7602324在做分类时常常需要估算不同样本之间的相似性度量(SimilarityMeasurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离...
分类:
其他好文 时间:
2015-06-06 19:33:58
阅读次数:
152
上一篇中介绍了四个算法,并用四个算法分别计算了两个人的相似度。这篇就来讲讲相似性算法在实际当中怎么用。第一:将指定的人与其他人作相似性比较,并从高到低进行排序;第二:对指定的人推荐未看过的电影。同样还是先给出具体分析,然后给出相应算法,再最后一起给出代码。 根据相似性从高到底排序。def to...
分类:
其他好文 时间:
2015-05-18 14:35:23
阅读次数:
594