介绍了机器学习中的几类问题划分。 半监督学习能够避免标记成本昂贵的问题。 强化学习,可以看做是从反馈机制中来学习。 在线学习,数据一个接一个地产生并交给算法模型线上迭代。 主动学习,机器能针对自己没有信心的数据提问,得到答案后再学习。 针对特征空间也有分类,比如具体的特征、原始的(个人理解是人为可提 ...
分类:
其他好文 时间:
2017-06-20 16:24:28
阅读次数:
147
这是一篇论文,原地址在: https://arxiv.org/abs/1312.5602 我属于边看便翻译,边理解,将他们记录在这里: Abstract: 我们提出了第一个深学习模型,成功地学习控制策略直接从高维感官输入使用强化学习。该模型是一个卷积神经网络,用Q-学习的变体训练,其输入是原始像素, ...
分类:
其他好文 时间:
2017-06-10 10:44:44
阅读次数:
406
强化学习是程序或者智能体通过与环境不断地进行交互学习一个从环境到动作的映射,学习的目标使累计回报最大化。 强化学习是一种试错学习,在各种状态选需要尽量尝试所有可以选择的动作,通过环境的反馈来判断动作的优劣,最终获得环境和最优动作的映射关系。 (马尔可夫)MDP通常来描述一个强化学习问题,智能体根据当 ...
分类:
其他好文 时间:
2017-06-03 17:33:47
阅读次数:
175
近年来阿里不断运用深度学习、强化学习等人工智能领域的相关知识优化自身电商平台的搜索引擎和推荐系统,让其从冷冰冰的系统不断成长为越来越懂用户的智能购物助手。日前,《尽在双11》人工智能部分执笔人&阿里技术专家乐田与仁重就“人工智能/机器学习技术在电商场景下的..
分类:
其他好文 时间:
2017-05-16 14:56:41
阅读次数:
200
郑宇,腾讯高级工程师, 曾在东方梦工厂担任软件工程师。目前就职于腾讯上海NEXT Studio,目前主要专注于强化学习和图像方面。 今年GDC大会上,Google演示了基于当下热门的神经网络技术GAN(生成式对抗网络)来做图片编辑的技术,用户可以在图片库中选择一张人脸的照片,对其进行局部的更改,神经 ...
分类:
其他好文 时间:
2017-05-08 14:42:29
阅读次数:
168
机器学习按数据的使用方式来说可以分为有监督学习、无监督学习、半监督学习、强化学习等,机器学习中的算法还有另外一种划分方式:分类、聚类、回归。但我更喜欢分为两种:广义的分类(分类+聚类)和回归,这里是按照预测的结果是离散数据还是连续数据来划分的。今天要介绍的决策树就是分类算法中的一种。 在介绍机器学习 ...
分类:
其他好文 时间:
2017-05-08 01:26:28
阅读次数:
228
最近因为某个不可描述的原因需要迅速用强化学习完成一个小实例,但是之前完全不懂强化学习啊,虽然用了人家的代码但是在找代码的过程中还是发现了很多不错的强化学习资源,决定mark下来以后学习用 【1】如何用简单例子讲解 Q - learning 的具体过程? https://www.zhihu.com/q ...
分类:
其他好文 时间:
2017-05-06 20:53:25
阅读次数:
202
转自https://zhuanlan.zhihu.com/p/25239682 过去的一段时间在深度强化学习领域投入了不少精力,工作中也在应用DRL解决业务问题。子曰:温故而知新,在进一步深入研究和应用DRL前,阶段性的整理下相关知识点。本文集中在DRL的model-free方法的Value-bas ...
分类:
其他好文 时间:
2017-04-30 01:08:11
阅读次数:
4277
前面,我们提到了监督学习,在机器学习中,与之对应的是非监督学习。无监督学习的问题是,在未加标签的数据中,试图找到隐藏的结构。因为提供给学习者的实例是未标记的,因此没有错误或报酬信号来评估潜在的解决方案。这区别于监督学习和强化学习无监督学习。 无监督学习是密切相关的统计数据密度估计的问题。然而无监督学 ...
分类:
系统相关 时间:
2017-04-28 22:18:25
阅读次数:
299
机器学习算法大致可以分为三种: 1. 监督学习(如回归,分类) 2. 非监督学习(如聚类,降维) 3. 增强学习 什么是增强学习呢? 增强学习(reinforcementlearning, RL)又叫做强化学习,是近年来机器学习和智能控制领域的主要方法之一。 定义: Reinforcement le ...
分类:
其他好文 时间:
2017-04-06 18:51:57
阅读次数:
218