在上一篇文章中,我介绍了《训练自己的haar-like特征分类器并识别物体》的前两个步骤:1.准备训练样本图片,包括正例及反例样本2.生成样本描述文件3.训练样本4.目标识别=================今天我们将着重学习第3步:基于haar特征的adaboost级联分类器的训练。若将本步骤看做...
分类:
其他好文 时间:
2014-07-22 22:54:54
阅读次数:
254
本系列文章旨在学习如何在opencv中基于haar-like特征训练自己的分类器,并且用该分类器用于模式识别。该过程大致可以分为一下几个大步骤:1.准备训练样本图片,包括正例及反例样本2.生成样本描述文件3.训练样本4.目标识别=================本文主要对步骤1、步骤2进行说明。1....
分类:
其他好文 时间:
2014-07-16 18:24:00
阅读次数:
302
Logistic回归是一种非常高效的分类器。它不仅可以预测样本的类别,还可以计算出分类的概率信息。不妨设有$n$个训练样本$\{x_1, ..., x_n\}$,$x_i$是$d$维向量,其类别标签是$\{y_1, ..., y_n\}$。对于一个$c$类问题,$y_i \in \{1, 2, .....
分类:
其他好文 时间:
2014-06-21 16:04:13
阅读次数:
177
k邻近算法采用测量不同特征值之间的距离方法进行分类。优点:精度高、对异常值不敏感、没有数据输入假定;缺点:计算复杂度高、空间复杂度高(占内存);使用数据范围:数值型和标称型。
k-邻近算法的工作原理是:存在一个训练样本集,并且每个数据都存在标签,即我们知道每个数据都对应的哪个分类。输入一个没有标签的新数据,将新数据的每个特征和样本集中的所有数据进行笔记哦啊,提取出样本集中特征最相似(邻近)的分类...
分类:
编程语言 时间:
2014-05-20 16:54:05
阅读次数:
534
属于离散监督,是一个简单的分类算法工作原理:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。k-...
分类:
其他好文 时间:
2014-05-04 20:00:18
阅读次数:
388