Kmeans算法是一种极为常见的聚类算法。其算法过程大意如下:(1)通过问题分析,确定所要聚类的类别数k;(一般是难以直接确定,可以使用交叉验证法等方法,逐步进行确定。)(2)根据问题类型,确定计算数据间相似性的计算方法;(3)从数据集中随机选择k个数据作为聚类中心;(4)利用相似度计算公式,计算每...
分类:
其他好文 时间:
2015-01-22 11:00:54
阅读次数:
244
1.k近邻算法的思想给定一个训练集,对于新的输入实例,在训练集中找到与该实例最近的k个实例,这k个实例中的多数属于某个类,就把该输入实例分为这个类。因为要找到最近的k个实例,所以计算输入实例与训练集中实例之间的距离是关键!k近邻算法最简单的方法是线性扫描,这时要计算输入实例与每一个训练实例的距离,当...
分类:
编程语言 时间:
2015-01-05 07:00:14
阅读次数:
502
bzoj 3053 HDU 4347 : The Closest M Points kd树题目大意:求k维空间内某点的前k近的点。就是一般的kd树,根据实测发现,kd树的两种建树方式,即按照方差较大的维度分开(建树常数大)或者每一位轮换分割(询问常数大),后者更快也更好些,以后就果断写第二种了。#i...
分类:
其他好文 时间:
2014-12-08 17:20:35
阅读次数:
533
简介kd树(k-dimensional树的简称),是一种分割k维数据空间的数据结构。主要应用于多维空间关键数据的搜索(如:范围搜索和最近邻搜索)。一个KDTree的例子上图的树就是一棵KDTree,形似二叉搜索树,其实KDTree就是二叉搜索树的变种。这里的K = 3.首先来看下树的组织原则。将每一个元组按0排序(第一项序号为0,第二项序号为1,第三项序号为2),在树的第n层,第 n%3 项被用粗...
分类:
其他好文 时间:
2014-11-26 19:04:33
阅读次数:
286
机器学习算法 原理、实现与实践 —— 距离的度量声明:本篇文章内容大部分转载于July于CSDN的文章:从K近邻算法、距离度量谈到KD树、SIFT+BBF算法,对内容格式与公式进行了重新整理。同时,文章中会有一些对知识点的个人理解和归纳补充,不代表原文章作者的意图。1. 欧氏距离欧氏距离是最常见的两...
分类:
其他好文 时间:
2014-11-07 14:30:06
阅读次数:
281
本文介绍一种用于高维空间中的快速最近邻和近似最近邻查找技术——Kd-Tree(Kd树)。Kd-Tree,即K-dimensional
tree,是一种高维索引树形数据结构,常用于在大规模的高维数据空间进行最近邻查找(Nearest Neighbor)和近似最近邻查找(Approximate Nearest Neighbor),例如图像检索和识别中的高维图像特征向量的K近邻查找与匹配。本文首先介...
分类:
编程语言 时间:
2014-10-22 11:03:01
阅读次数:
368
Kd-树 其实是K-dimension tree的缩写,是对数据点在k维空间中划分的一种数据结构。其实,Kd-树是一种平衡二叉树。举一示例:假设有六个二维数据点 = {(2,3),(5,4),(9,6),(4,7),(8,1),(7,2)},数据点位于二维空间中。为了能有效的找到最近邻,Kd-树采用...
分类:
其他好文 时间:
2014-10-19 18:18:57
阅读次数:
370
最近在项目中用到了,特地搬运过来。Kd-树 其实是K-dimension tree的缩写,是对数据点在k维空间中划分的一种数据结构。其实,Kd-树是一种平衡二叉树。举一示例:假设有六个二维数据点 = {(2,3),(5,4),(9,6),(4,7),(8,1),(7,2)},数据点位于二维空间中。为...
分类:
其他好文 时间:
2014-08-05 09:30:38
阅读次数:
321
问题
给定一系列的点,和一个矩形。求矩形中包含的点的数量。
解答
这个问题可以通过建立矩阵来进行求解。首先将一个空间分割成矩阵,将点放置在对应的格子中,再计算矩形覆盖的格子,再判断格子中的点是否包含在矩形中
这种方法的问题是,可能这些点全都集中在一个格子中。这种情况下算法的效率比较低。
...
分类:
其他好文 时间:
2014-06-14 10:37:17
阅读次数:
192
学习统计学习方法也已经有几天了,在这几天的时间里,我主要对分类学习方法进行了初步学习,包括:感知机——>支持向量机,K近邻法,朴素贝叶斯法,决策树,logistic
回归与最大熵模型。 其中k近邻法的实现为kd树,朴素贝叶斯通过极大似然估计实现,决策树包含有生成决策树算法ID3,C4.5,决策...
分类:
其他好文 时间:
2014-05-10 03:06:00
阅读次数:
225