感知器(perceptron)1957年由Rosenblatt提出,是神经网络与支持向量机的基础。感知器是二类分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1二值。感知机对应于输入空间(特征空间)中将实例划分为正负两类的分离超平面,属于判别模型。感知机学习旨在求出将训练数据进行线性划分的分离超平面。...
分类:
其他好文 时间:
2014-12-11 20:53:03
阅读次数:
202
监督学习的任务就是学习一个模型(或者得到一个目标函数),应用这一模型,对给定的输入预测相应的输出。这一模型的一般形式为一个决策函数Y=f(X),或者条件概率分布P(Y|X)。
监督学习方法又可以分为生成方法(generative approach)和判别方法(discriminative approach)。所学到的模型分别为生成模型(generative model)和判别模型(discriminative model)。...
分类:
其他好文 时间:
2014-12-03 15:49:32
阅读次数:
174
这篇文章浅谈一下我对机器学习中生成模型和判别模型的认识。首先,机器学习算法分为监督学习、半监督学习、非监督学习等。而对于监督学习,又可以分成生成学习(generative approach)和判别学习(discriminative approach)。下面是NG对这两个概念的解释:Algorithm...
分类:
其他好文 时间:
2014-11-23 22:57:44
阅读次数:
218
本文基本按照《统计学习方法》中第一章的顺序来写,目录如下:1. 监督学习与非监督学习2. 统计学习三要素3.过拟合与正则化(L1、L2)4.交叉验证5. 泛化能力6. 生成模型与判别模型7. 机器学习主要问题8. 提问正文:1. 监督学习与非监督学习 从标注数据中学习知识的规律以及训练模型的方法叫....
分类:
其他好文 时间:
2014-11-16 21:18:33
阅读次数:
281
1、多项式分布 2、文本的多项式分布建模3、共轭先验4、概率平滑{Lapace平滑、加1平滑、Dirichlet贝叶斯平滑、2阶段语言模型}5、似然函数6、log似然函数7、期望最大化算法8、条件概率9、贝叶斯全公式10、生成模型11、判别模型12、条件期望13、拉格朗日系数14、VSM,LSI,P...
分类:
其他好文 时间:
2014-10-19 21:18:18
阅读次数:
198
参考论文:1、A Practical Guide to TrainingRestricted Boltzmann Machines2、Classification using Discriminative Restricted Boltzmann Machines 目前研究火热的深度学习中,RBM(...
分类:
其他好文 时间:
2014-08-03 17:44:35
阅读次数:
498