条件随机场(conditional random fields,简称 CRF,或CRFs)下文简称CRF,是一种典型的判别模型,相比隐马尔可夫模型可以没有很强的假设存在,在分词、词性标注、命名实体识别等领域有较好的应用。CRF是在马尔可夫随机场的基础上加上了一些观察值(特征),马尔可夫随机场<=>概 ...
分类:
其他好文 时间:
2017-05-22 00:15:29
阅读次数:
267
对于输入x,类别标签Y: 判别模型:由数据直接学习决策面Y=f(x)或条件概率P(Y|x)作为预测模型 生成模型:由数据学习联合概率分布P(x,Y),然后求出条件概率P(Y|x)作为预测模型 模型区别: 判别模型寻找不同类别之间的分离面,反映不同类别之间的差异。 生成模型通过统计反映同类数据的相似度 ...
分类:
其他好文 时间:
2017-05-02 23:34:38
阅读次数:
175
李航的《统计学习方法》 这本书开篇第一章写得特别好,各个模型的算法推导也比较全,基本涵盖了比较经典的判别模型和生成模型。 《机器学习实战》 这本书代码和应用特别多,了解python用法和机器学习算法的代码实现非常方便。 项亮的《推荐系统实践》 这本书个人感觉偏理论一点,伪代码看着都实现不了,不过关于 ...
分类:
其他好文 时间:
2017-03-05 21:12:32
阅读次数:
403
感知机是一种线性分类模型,属于判别模型 f(x) = sign(wx+b) ; f(x)∈{+1,-1}; 其中M为错分类点的集合M。 感知机学习算法是误分类驱动的,采用随机梯度下降法进行参数更新。 w< w + γyixi b< b + γyi γ为学习率,反复迭代直到所有样本均分类正确。 总结: ...
分类:
编程语言 时间:
2017-02-19 11:09:43
阅读次数:
213
第2章 感知机 感知机是二类分类的线性分类模型,其输入为实例的特征向量,感知机对应于输入空间(特征空间)中将实例划分为正负两类的分离超平面,属于判别模型。导入基于误分类的损失函数,利用梯度下降法对损失函数进行极小化,求得感知机模型。感知机学习算法分为原始形式和对偶形式,是神经网络和支持向量机的基础。 ...
分类:
其他好文 时间:
2017-01-07 22:32:59
阅读次数:
305
摘要: 1.定义 2.常见算法 3.区别 4.优缺点 内容: 1.定义 1.1 生成模型: 在概率统计理论中, 生成模型是指能够随机生成观测数据的模型,尤其是在给定某些隐含参数的条件下。它给观测值和标注数据序列指定一个联合概率分布(joint probability distribution)。在机 ...
分类:
其他好文 时间:
2016-12-23 01:33:42
阅读次数:
171
1、介绍 朴素贝叶斯方法,朴素指特征条件独立,贝叶斯指贝叶斯定理。算法可用来做分类,既可以是判别模型,也可以是生成模型。训练的时候,学习输入输出的联合概率分布,分类的时候,利用贝叶斯定理计算后验概率最大的输出。一句话总结:根据先验概率和条件概率分布,得到联合概率分布。如下所示: 2、模型讲解 条件概 ...
分类:
编程语言 时间:
2016-11-29 17:12:09
阅读次数:
593
生成模型与判别模型 zouxy09@qq.com http://blog.csdn.net/zouxy09 一直在看论文的过程中遇到这个问题,折腾了不少时间,然后是下面的一点理解,不知道正确否。若有错误,还望各位前辈不吝指正,以免小弟一错再错。在此谢过。 一、决策函数Y=f(X)或者条件概率分布P( ...
分类:
其他好文 时间:
2016-11-08 09:43:01
阅读次数:
208
前言
三号要去参加CAD/CG会议,投了一篇关于使用生成模型和判别模型的RBM做运动捕捉数据风格识别的论文。这段时间一直搞卷积RBM了,差点把原来的实验内容都忘记了,这里复习一下判别式玻尔兹曼机的训练...
分类:
其他好文 时间:
2016-11-03 14:22:59
阅读次数:
286
判别模型与生成模型 前面也有过介绍,回顾一下,判别模型的意思就是它不关心数据是怎么产生的,不关心数据之间有何概率关系,它只关心数据之间有什么不同,这种不同会造成什么结果。比如说给你一堆水果,让你把它们中相同种类的放在一个篮子里,判别模型的话,我们直接通过分辨两个果子之间的差别,是黄的还是红的,是大的 ...
分类:
其他好文 时间:
2016-09-20 06:46:22
阅读次数:
115