集成学习(Esemble learning) 在机器学习领域,如何根据观察数据学习一个精确的估计数据是一个主要问题。 通常,我们通过训练数据应用某个算法得出一个训练模型,然后使用评估数据来评估这个模型的预测正确率,最后如果我们可以接受这个正确率就使用该模型进行预测数据。通常我们将训练数据进行交叉.....
分类:
其他好文 时间:
2014-07-24 17:32:05
阅读次数:
234
——转 聚类的目标是使同一类对象的相似度尽可能地小;不同类对象之间的相似度尽可能地大。目前聚类的方法很多,根据基本思想的不同,大致可以将聚类算法分为五大类:层次聚类算法、分割聚类算法、基于约束的聚类算法、机器学习中的聚类算法和用于高维度的聚类算法。摘自 数据挖掘中的聚类分析研究综述 这篇论文。--....
分类:
其他好文 时间:
2014-07-23 15:24:26
阅读次数:
316
机器学习新手,接触的是《机器学习实战》这本书,感觉书中描述简单易懂,但对于python语言不熟悉的我,也有很大的空间。今天学习的是k-近邻算法。 1. 简述机器学习 在日常生活中,人们很难直接从原始数据本身获得所需信息。而机器学习就是把生活中无序的数据转换成有用的信息。例如,对于垃圾邮件的检...
分类:
编程语言 时间:
2014-07-22 23:37:57
阅读次数:
366
本文是Andrew Ng在Coursera的机器学习课程的笔记。整体步骤确定网络模型初始化权重参数对于每个样例,执行以下步骤直到收敛计算模型输出:forward propagation计算代价函数:比较模型输出与真实输出的差距更新权重参数:back propagation确定网络模型神经网络模型由输...
分类:
其他好文 时间:
2014-07-22 23:36:27
阅读次数:
376
原文出处:http://blog.csdn.net/amblue/article/details/17023485 在NLP和机器学习中经常会遇到这两种显著不同的模型,在学习阶段(训练阶段)和评估阶段(测试阶段)都有不同的表现总结一下它们之间的区别,欢迎补充:1. 二者最本质的区别是建模对象不同 假...
分类:
其他好文 时间:
2014-07-22 22:43:13
阅读次数:
150
梯度下降、神经网络、BP神经网络,以及结合前述知识实际应用。文章走马观花把这几天学的知识滤了一遍,主要是有很多好的资料
分类:
其他好文 时间:
2014-07-22 22:40:35
阅读次数:
273
斯坦福ML公开课笔记15
我们在上一篇笔记中讲到了PCA(主成分分析)。PCA是一种直接的降维方法,通过求解特征值与特征向量,并选取特征值较大的一些特征向量来达到降维的效果。
本文继续PCA的话题,包括PCA的一个应用——LSI(Latent Semantic Indexing, 隐含语义索引)和PCA的一个实现——SVD(Singular Value Decomposition,奇异值分解),在SVD和LSI结束之后,关于PCA的内容就告一段落。视频的后半段开始讲无监督学习的一种——ICA(Indepen...
分类:
其他好文 时间:
2014-07-22 14:16:14
阅读次数:
314
决策树的优势就在于数据形式非常容易理解,而kNN的最大缺点就是无法给出数据的内在含义。
1:简单概念描述
决策树的类型有很多,有CART、ID3和C4.5等,其中CART是基于基尼不纯度(Gini)的,这里不做详解,而ID3和C4.5都是基于信息熵的,它们两个得到的结果都是一样的,本次定义主要针对ID3算法。下面我们介绍信息熵的定义。
事件ai发生的概率用p(ai...
分类:
其他好文 时间:
2014-07-21 22:21:08
阅读次数:
360
上一节最后讲到了建立一个extractor的方法,手工建立和机器学习等,这一节详细阐述手工建立pattern的方法。引用Jurafsky教授常说的话: let‘s look at the intuition. Jurafsky教授讲话总是微皱着眉头,感觉很较真...
分类:
其他好文 时间:
2014-07-21 13:30:48
阅读次数:
257
学习方式根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。监督式学习:在监...
分类:
其他好文 时间:
2014-07-21 08:08:39
阅读次数:
327