AdaBoost训练弱分类器关注的是那些被分错的样本,AdaBoost每一次训练都是为了减少错误分类的样本。而GBDT训练弱分类器关注的是残差,也就是上一个弱分类器的表现与完美答案之间的差距,GBDT每一次训练分类器,都是为了减少这个差距。 GBDT的原理就是所有弱分类器的结果相加等于预测值,然后下 ...
分类:
其他好文 时间:
2021-04-19 15:12:38
阅读次数:
0
校招在即,准备准备一些面试可能会用到的东西吧。希望这次面试不会被挂。 基本概念 说到机器学习模型的误差,主要就是bias和variance。 Bias:如果一个模型的训练错误大,然后验证错误和训练错误都很大,那么这个模型就是高bias。可能是因为欠拟合,也可能是因为模型是弱分类器。 Variance ...
分类:
编程语言 时间:
2020-06-24 19:43:11
阅读次数:
67
boosting Boosting 算法的特点在于:将表现一般的弱分类器通过组合变成更好的模型。代表自然就是我们的随即森林了。 GBDT和Adaboost是boost算法中比较常见的两种,这里主要讲解Adaboost。 Adaboost Adaboost算法的核心就是两个权重。对于数据有一个权重,权 ...
分类:
编程语言 时间:
2020-06-21 09:50:32
阅读次数:
59
https://www.cnblogs.com/zyly/p/9416263.html adaboost底数为e 系数αkαk表示了弱分类器Gk(x)Gk(x)的重要性,这里所有αα之和并不为1,f(x)f(x)的符号决定实例xx的类,f(x)f(x)的绝对值表示分类的置信度。 ...
分类:
其他好文 时间:
2020-06-17 23:07:09
阅读次数:
59
基本思路 Adaboost体现的是“三个臭皮匠,胜过一个诸葛亮”,它是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器), 然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。训练过程如下(参考Andy的机器学习--浅析Adaboost算法,他说得非常形象,贴切。) ...
分类:
编程语言 时间:
2020-06-17 20:12:02
阅读次数:
45
一、基本概念 GBDT (Gradient Boosting Decision Tree) 梯度提升迭代决策树。 GBDT通过多轮迭代,每轮迭代产生一个弱分类器,每个分类器在上一轮分类器的残差基础上进行训练。 弱分类器一般会选择为CART TREE(也就是分类回归树)。 每一轮预测和实际值有残差,下 ...
分类:
其他好文 时间:
2020-03-12 17:13:44
阅读次数:
71
1.提升方法AdaBoost算法AdaBoost的思想:是先得到一个弱分类器,然后在这个弱分类器的基础上将其提升到强分类器,具体方法是提升上一个分类器中被误分类的样本的权重,使得本次训练的分类器更加重视这些样本,最后的分类器是所有的分类器的线性组合。前一次没有正确分类的样本点在后一次会被更加重视,前 ...
分类:
其他好文 时间:
2020-02-02 17:40:00
阅读次数:
68
Adaboost算法及其代码实现 算法概述 AdaBoost(adaptive boosting),即自适应提升算法。 Boosting 是一类算法的总称,这类算法的特点是通过训练若干弱分类器,然后将弱分类器组合成强分类器进行分类。 为什么要这样做呢?因为弱分类器训练起来很容易,将弱分类器集成起来, ...
分类:
编程语言 时间:
2020-01-30 09:18:45
阅读次数:
99
Baggging 和Boosting都是模型融合的方法,可以将弱分类器融合之后形成一个强分类器,而且融合之后的效果会比最好的弱分类器更好。 Bagging: 先介绍Bagging方法: Bagging即套袋法,其算法过程如下: 从原始样本集中抽取训练集。每轮从原始样本集中使用Bootstraping ...
分类:
其他好文 时间:
2020-01-15 21:16:43
阅读次数:
79
Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。 过程: 首先对于向量{XT,y},给定初始权值1/N,目标函数 y=sign(amGm(x)),其中am初始为1,首次Gm(x)可以凭经验给出 ...
分类:
其他好文 时间:
2019-12-11 17:35:28
阅读次数:
63