原文链接:https://www.cnblogs.com/pinard/p/6221564.html 谱聚类(spectral clustering)是广泛使用的聚类算法,比起传统的K-Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时聚类的计算量也小很多,更加难能可贵的是实现起来 ...
分类:
其他好文 时间:
2020-07-20 13:26:41
阅读次数:
60
简称SD,顾名思义,在采集的语音信号流中,分辨出不同说话人的说话时长并标注。参照2010年8月的文献[1]中的一张图: 又称说话人分割,在语音信号处理的多种场景下均有应用需求,近年来也被多来越多的研究者所关注。SD的方法分为以下两种:1)无监督方法,比如谱聚类以及k均值等;2)监督方法,深度神经网络 ...
分类:
其他好文 时间:
2020-01-04 20:09:39
阅读次数:
582
@[toc] 1 聚类的定义 聚类就是对大量未知标注的数据集,按照数据 内部存在的数据特征 将数据集划分为多个不同的类别,使类别内的数据比较相似,类别之间的数据相似度比较小;属于 无监督学习 。 聚类算法的重点是计算样本项之间的 相似度 ,有时候也称为样本间的 距离 。 和分类算法的区别: 分类算法 ...
分类:
编程语言 时间:
2020-01-04 01:38:28
阅读次数:
134
谱聚类是基于谱图理论基础上的一种聚类方法,与传统的聚类方法相比: 具有在任意形状的样本空间上聚类并且收敛于全局最优解的优点。 通过对样本数据的拉普拉斯矩阵的特征向量进行聚类,从而达到对样本数据进行聚类的目的; 其本质是将聚类问题转换为图的最优划分问题,是一种点对聚类算法。谱聚类算法将数据集中的每个对 ...
分类:
其他好文 时间:
2020-01-01 20:18:49
阅读次数:
97
讲授聚类算法的基本概念,算法的分类,层次聚类,K均值算法,EM算法,DBSCAN算法,OPTICS算法,mean shift算法,谱聚类算法,实际应用 课程大纲: 基于密度的聚类算法简介DBSCAN算法的核心思想基本概念定义算法的流程实现细节问题实验OPTICS算法的核心思想基本概念定义算法的流程根 ...
分类:
编程语言 时间:
2019-12-29 01:07:08
阅读次数:
146
讲授聚类算法的基本概念,算法的分类,层次聚类,K均值算法,EM算法,DBSCAN算法,OPTICS算法,mean shift算法,谱聚类算法,实际应用。 大纲: 聚类问题简介聚类算法的分类层次聚类算法的基本思想簇之间距离的定义k均值算法的基本思想k均值算法的流程k均值算法的实现细节问题实验EM算法简 ...
分类:
编程语言 时间:
2019-12-21 18:25:07
阅读次数:
92
谱聚类(spectral clustering)是广泛使用的聚类算法,比起传统的K-Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时聚类的计算量也小很多,更加难能可贵的是实现起来也不复杂。在处理实际的聚类问题时,个人认为谱聚类是应该首先考虑的几种算法之一。下面我们就对谱聚类的算法... ...
分类:
其他好文 时间:
2019-07-19 18:55:16
阅读次数:
98
聚类算法: K 均值聚类(K Means) K 中心点聚类(K Meaoids) 密度聚类(Densit based Spatial Clustering of Application with Noise,DBSCAN) 系谱聚类(Hierarchical Clustering) 期望最大化聚类( ...
分类:
编程语言 时间:
2019-07-12 12:54:03
阅读次数:
178
谱聚类算法总结 简述 谱聚类是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的聚类的目的。其中的最优是指最优目标函数不同,可以是割边最小分割,也可以是分割规模差不多且割边最小的分割。 谱聚类算法首先根据给定的样本数据集定 ...
分类:
其他好文 时间:
2019-01-29 01:16:00
阅读次数:
356
一、依据不同属性分类运动分割算法 Camera motion first vs. Object motion first Feature based vs. Dense motion based 2D vs. 3D Rigid vs. Nonrigid Single vs. Multiple Occ ...
分类:
其他好文 时间:
2018-11-11 12:50:15
阅读次数:
217