原文链接:http://tecdat.cn/?p=22721 原文出处:拓端数据部落公众号 Lease Absolute Shrinkage and Selection Operator(LASSO)在给定的模型上执行正则化和变量选择。根据惩罚项的大小,LASSO将不太相关的预测因子缩小到(可能)零 ...
分类:
编程语言 时间:
2021-06-10 17:45:22
阅读次数:
0
项目的开发需要,用到了WPF原生提供的InkCanvas控件,也有叫水墨控件。 需要开发的功能为鼠标光标随意圈选笔画,选中完成后移动圈选的笔画到画布其他地方。功能实现的效果如下所示: 本文只讲解实现的核心代码: 1:类似Photoshop的 Lasso工具的效果如何实现? (锦上添花的UI效果:ph ...
分类:
移动开发 时间:
2021-05-24 10:18:43
阅读次数:
0
一、线性回归 一、线性回归 ? 假设有数据有 ,其中 , 。其中m为训练集样本数,n为样本维度,y是样本的真实值。线性回归采用一个多维的线性函数来尽可能的拟合所有的数据点,最简单的想法就是最小化函数值与真实值误差的平方(概率解释-高斯分布加最大似然估计)。即有如下目标函数: 其中线性函数如下: ? ...
分类:
其他好文 时间:
2021-04-28 12:19:06
阅读次数:
0
前文我们讲到线性回归建模会有共线性的问题,岭回归和lasso算法都能一定程度上消除共线性问题。 岭回归 > #########正则化方法消除共线性 > ###岭回归 > ###glmnet只能处理矩阵 > library(glmnet) > library(mice) > creditcard_ex ...
分类:
编程语言 时间:
2020-11-04 19:04:55
阅读次数:
29
Lasso,也就是L1正则项,它倾向于完全消除最不重要特征的权重(置为0),就是说Lasso会自动执行特征选择,并输出一个稀疏模型。 问题:Lasso在特征数量超过训练实例的数量时(比如10条数据20个特征),或者特征之间相关性比较强,Lasso就会很不稳定。 总结:Lasso可进行特征选择,不代表 ...
分类:
其他好文 时间:
2020-05-25 10:52:02
阅读次数:
55
降低模型的过拟合的好方法就是 正则化 这个模型(即限制它):模型有越少的自由度,就越难拟合数据。例如,正则化一个多项式模型,一个简单的方法就是减少多项式的阶数。 对于线性模型,正则化的典型实现就是约束模型中参数的权重。这里介绍三种不同约束权重的方法:Ridge回归,Lasso回归和Elastic N ...
分类:
其他好文 时间:
2020-05-16 00:09:41
阅读次数:
94
逻辑回归、正则化、感知机 正则化 为避免过拟合,增强模型的泛化能力,可以使用正则化的方法。 1. Lasso回归 L1正则化 $$ J(\theta)=\frac{1}{2n}(\mathtt X\theta Y)^T(\mathtt X\theta Y)+\alpha\lVert \theta\r ...
分类:
其他好文 时间:
2020-05-13 16:36:28
阅读次数:
60
Using subgradient method to solve lasso problem The problem is to solve: $$\underset{\beta}{\operatorname{minimize}}\left\{\frac{1}{2 N} \sum_{i=1}^{N ...
分类:
其他好文 时间:
2020-05-10 19:25:21
阅读次数:
167
弹性网回归是lasso回归和岭回归的结合,其代价函数为: 若令,则 由此可知,弹性网的惩罚系数恰好为岭回归罚函数和Lasso罚函数的一个凸线性组合.当α=0时,弹性网回归即为岭回归;当 α=1时,弹性网回归即为Lasso回归.因此,弹性网回归兼有Lasso回归和岭回归的优点,既能达到变量选择的目的, ...
分类:
编程语言 时间:
2020-04-30 15:52:59
阅读次数:
276
class sklearn.linear_model.Lasso(alpha=1.0, fit_intercept=True, normalize=False, precompute=False, copy_X=True, max_iter=1000, tol=0.0001, warm_start= ...
分类:
其他好文 时间:
2020-03-13 17:09:55
阅读次数:
86