元素的阶 设<G,·>是群,a∈G,a的整数次幂可归纳定义为: 容易证明,?m,n∈I,am··an = am+n, (am)n = amn. 定义:设<G,·>是群,a∈G,若?n∈I+,an ≠ e,则称a的阶是无限的;否则称使得an = e的最小整数n为a的阶,此时a的阶也称为a的周期,常用| ...
分类:
其他好文 时间:
2018-12-08 00:17:49
阅读次数:
291
声明 可能本文章会有错误,希望各位读者看到后,记得回复留言,提醒我,以免误人子弟。本人菜鸡,还望各位大佬手下留情。 题目 : 四平方和 四平方和定理,又称为拉格朗日定理: 每个正整数都可以表示为至多4个正整数的平方和。 如果把0包括进去,就正好可以表示为4个数的平方和。 比如: 5 = 0^2 + ...
分类:
其他好文 时间:
2018-05-15 21:00:31
阅读次数:
171
四平方和定理,又称为拉格朗日定理:每个正整数都可以表示为至多4个正整数的平方和。如果把0包括进去,就正好可以表示为4个数的平方和。比如:5 = 0^2 + 0^2 + 1^2 + 2^27 = 1^2 + 1^2 + 1^2 + 2^2(^符号表示乘方的意思)对于一个给定的正整数,可能存在多种平方和 ...
分类:
编程语言 时间:
2018-04-14 12:37:22
阅读次数:
157
四平方和 四平方和定理,又称为拉格朗日定理:每个正整数都可以表示为至多4个正整数的平方和。如果把0包括进去,就正好可以表示为4个数的平方和。 比如:5 = 0^2 + 0^2 + 1^2 + 2^27 = 1^2 + 1^2 + 1^2 + 2^2(^符号表示乘方的意思) 对于一个给定的正整数,可能 ...
分类:
其他好文 时间:
2018-03-28 20:23:39
阅读次数:
128
四平方和定理,又称为拉格朗日定理:每个正整数都可以表示为至多4个正整数的平方和。如果把0包括进去,就正好可以表示为4个数的平方和。 比如:5 = 0^2 + 0^2 + 1^2 + 2^27 = 1^2 + 1^2 + 1^2 + 2^2(^符号表示乘方的意思) 对于一个给定的正整数,可能存在多种平 ...
分类:
其他好文 时间:
2018-03-22 21:25:16
阅读次数:
202
四平方和定理,又称为拉格朗日定理: 每个正整数都可以表示为至多4个正整数的平方和。 如果把0包括进去,就正好可以表示为4个数的平方和。 比如: 5 = 0^2 + 0^2 + 1^2 + 2^2 7 = 1^2 + 1^2 + 1^2 + 2^2 (^符号表示乘方的意思) 对于一个给定的正整数,可能 ...
分类:
其他好文 时间:
2018-02-05 21:38:46
阅读次数:
135
四平方和定理,又称为拉格朗日定理: 每个正整数都可以表示为至多4个正整数的平方和。如果把0包括进去,就正好可以表示为4个数的平方和。 比如:5 = 0^2 + 0^2 + 1^2 + 2^27 = 1^2 + 1^2 + 1^2 + 2^2(^符号表示乘方的意思) 对于一个给定的正整数,可能存在多种 ...
分类:
其他好文 时间:
2017-10-29 11:14:22
阅读次数:
74
欧拉函数: 在数论,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目。此函数以其首名研究者欧拉命名,它又称为Euler's totient function、φ函数、欧拉商数等。 例如φ(8)=4,因为1,3,5,7均和8互质。 从欧拉函数引伸出来在环论方面的事实和拉格朗日定理构成了欧拉定 ...
分类:
其他好文 时间:
2017-08-01 11:12:22
阅读次数:
112
题意: 四平方和定理,又称为拉格朗日定理: 每个正整数都可以表示为至多4个正整数的平方和。 如果把0包括进去,就正好可以表示为4个数的平方和。 比如: 5 = 0^2 + 0^2 + 1^2 + 2^2 7 = 1^2 + 1^2 + 1^2 + 2^2 (^符号表示乘方的意思) 对于一个给定的正整 ...
分类:
编程语言 时间:
2017-04-07 23:22:18
阅读次数:
266
四平方和定理,又称为拉格朗日定理: 每个正整数都可以表示为至多4个正整数的平方和。 如果把0包括进去,就正好可以表示为4个数的平方和。 比如: 5 = 0^2 + 0^2 + 1^2 + 2^2 7 = 1^2 + 1^2 + 1^2 + 2^2 (^符号表示乘方的意思) 对于一个给定的正整数,可能 ...
分类:
其他好文 时间:
2017-04-06 09:57:38
阅读次数:
138