极大似然估计学习时总会觉得有点不可思议,为什么可以这么做,什么情况才可以用极大似然估计。本文旨在通俗理解MLE(Maximum Likelihood Estimate)。 一、极大似然估计的思想与举例 举个简单的栗子:在一个盒子里有白色黑色小球若干个,每次有放回地从里面哪一个球,已知抽到白球的概率可 ...
分类:
其他好文 时间:
2019-01-20 15:57:40
阅读次数:
245
贝叶斯里面的参数原理 最大似然: 即最符合观测数据的最有优势,即p(D|h)最大 奥卡姆剃刀:即越常见的越有可能发生,即p(h) 表示的是先验概率 最大似然: 当我们投掷一枚硬币,观测到的是正面,那么我们猜测投掷正面的概率为1,即最大似然值的概率是最大的 奥卡姆剃刀: 如果平面上有N个点,我们使用n ...
分类:
其他好文 时间:
2019-01-18 19:59:07
阅读次数:
224
1. 前言 我们之前有介绍过 "4. EM算法 高斯混合模型GMM详细代码实现" ,在那片博文里面把GMM说涉及到的过程,可能会遇到的问题,基本讲了。今天我们升级下,主要一起解析下EM算法中GMM(搞事混合模型)带惩罚项的详细代码实现。 2. 原理 由于我们的极大似然公式加上了惩罚项,所以整个推算的 ...
分类:
编程语言 时间:
2019-01-16 21:49:46
阅读次数:
195
1.最小二乘法解的的推导,几何意义解释最小二乘法 2.从概率的角度解释最小二乘法 结论:最小二乘法等价于最大似然估计(条件是噪音需要满足高斯分布) 3. L2正则化 岭回归 4. 从概率的角度看正则化 结论:正则化之后的最小二乘法等价于最大后验概率估计(条件是噪音和先验分布都满足高斯分布) ...
分类:
其他好文 时间:
2019-01-15 17:12:00
阅读次数:
233
theta是个未知的常量,X是随机变量, MLE最大似然估计 MAE最大后验概率 统计机器学习,优化问题 1)建立模型、概率 2)定义损失函数 3)梯度下降/牛顿法求解 概率图模型 求积分(用蒙特卡洛方法取样) ...
分类:
其他好文 时间:
2019-01-15 16:59:51
阅读次数:
314
二项逻辑回归模型是如下的条件概率分布: 其中x∈是输入,y∈{0,1}是输出。 为了方便,将权值向量和输入向量进行扩充,此时w = ,x = ,回归模型表示如下: 参数w未知,采用统计学中的极大似然估计来由样本估计参数w。对于0-1分布x ~ B(1 , p),x的概率密度函数可以表示为: 其中k ...
分类:
其他好文 时间:
2019-01-14 20:08:47
阅读次数:
191
似然与概率 https://blog.csdn.net/u014182497/article/details/82252456 在统计学中,似然函数(likelihood function,通常简写为likelihood,似然)是一个非常重要的内容,在非正式场合似然和概率(Probability)几 ...
分类:
其他好文 时间:
2019-01-10 21:48:55
阅读次数:
172
当概率模型依赖于无法观测的隐性变量时,使用普通的极大似然估计法无法估计出概率模型中参数。此时需要利用优化的极大似然估计:EM算法。 在这里我只是想要使用这个EM算法估计混合高斯模型中的参数。由于直观原因,采用一维高斯分布。 一维高斯分布的概率密度函数表示为: 多个高斯分布叠加在一起形成混合高斯分布: ...
分类:
编程语言 时间:
2019-01-01 16:08:21
阅读次数:
235
Vagrantfile类似: 然后运行下面的vagrant up --provider=docker命令时失败: 原因是hashicorp/precise64这个box不支持provider=docker,换一个支持docker的box即可 ...
分类:
其他好文 时间:
2018-12-26 17:45:41
阅读次数:
178
朴素贝叶斯naive bayes是直接生成方法,也就是直接找出特征输出Y和特征X的联合分布P(X,Y)P(X,Y),然后用P(Y|X)=P(X,Y)/P(X)P(Y|X)=P(X,Y)/P(X)得出。 数学基础: 1. 最大似然估计 ...
分类:
编程语言 时间:
2018-12-24 18:12:45
阅读次数:
177