码迷,mamicode.com
首页 >  
搜索关键字:递推公式    ( 374个结果
java作业利用递归解决问题
第一题 利用递归求组合数 设计思想 (1)首先根据公式求,利用递归完成阶乘函数的初始化,并且通过调用阶乘,实现公式计算 (2)递推方法,根据杨辉三角的特点,设置二维数组,从上到下依次保存杨辉三角所得数,并且每次判断,行列和用户想要得到数的行列是否相同 (3)递归方法,递归调用函数,通过地递推公式从后 ...
分类:编程语言   时间:2017-10-13 14:09:11    阅读次数:214
[转载]递推公式的特征方程及通项公式
先贴上链接:http://blog.csdn.net/happykocola/article/details/73933314 因为最近在复习初赛,然后碰到了这道题,并不会做,才发现有这么高明的方法... 解释:通过特征方程法, 我们可以列出这样一个方程 x^2=5*x-6 然后解得 x1=2,x2 ...
分类:其他好文   时间:2017-10-13 14:05:20    阅读次数:219
【转载】递推公式的特征方程及通项公式
先贴上链接:http://blog.csdn.net/happykocola/article/details/73933314 因为最近在复习初赛,然后碰到了这道题,并不会做,才发现有这么高明的方法... 解释:通过特征方程法, 我们可以列出这样一个方程 x^2=5*x-6 然后解得 x1=2,x2 ...
分类:其他好文   时间:2017-10-13 14:00:26    阅读次数:185
第二次作业
课程作业01: 1.使用计算机计算组合数: (1).使用组合数公式n!来计算 设计思想:利用递归把n的阶乘求出来,再利用组合数的公式求出组合数。 程序流程图: 源程序代码: import java.util.Scanner; import org.omg.CORBA.PUBLIC_MEMBER; p ...
分类:其他好文   时间:2017-10-13 12:42:39    阅读次数:161
第二类Stirling数
第二类斯特林数 第二类Stirling数:S2(p, k) 1.组合意义:第二类Stirling数计数的是把p个互异元素划分为k个非空集合的方法数 2.递推公式: S2(0, 0) = 1 S2(p, 0) = 0 ( p >= 1) 显然p >= 1时这种方法不存在 S2(p, p) = 1 显然 ...
分类:其他好文   时间:2017-10-13 00:31:15    阅读次数:454
dp算法之方格取数
动态规划算法通常基于一个递推公式及一个或多个初始状态。当前子问题的解将由上一次子问题的解推出。使用动态规划来解题只需要多项式时间复杂度,因此它比回溯法、暴力法等要快许多。 现在我们用一道题来了解它。 dp经典之方格取数【问题描述】 设有N*N的方格图(N<=10,我们将其中的某些方格中填入正整数,而 ...
分类:编程语言   时间:2017-10-05 18:02:43    阅读次数:222
算法之动态规划(递推求解一)
这篇博客主要讲的是动态规划入门,即动态规划的思想,并且再讲解动态规划的最简单的一个方法。 首先,什么是动态规划? 动态规划是通过拆分问题,定义问题状态和状态之间的关系,使得问题能够以递推(或者说分治)的方式去解决。其实就是分解问题,分而治之。可能这样说大家都不太理解,其实这个有点类似于数学中的递推公 ...
分类:编程语言   时间:2017-09-23 20:19:48    阅读次数:189
poj 3070
矩阵快速幂模板题 递推公式 ac代码: ...
分类:其他好文   时间:2017-09-13 13:11:27    阅读次数:137
hd acm1005
问题: 已知递推公式:f[i] = ( a * f[i-1] + b * f[i-2] ) % 7,f[1]=1,f[2]=1。 需要你输入三个数a,b,n。其中a,b用来补充上述公式,用补充后的公式计算 f[n]。 析: 每次输入a,b都会有一个对应的公式,由这个公式会得到的一个周期性的数列,然后 ...
分类:其他好文   时间:2017-08-29 20:36:37    阅读次数:188
POJ 1185(状态压缩DP)
和POJ 3254很像。连续两个都不一样需要添加移位两位的条件,dp数组中多了一维保存上上一行。递推公式也变成求最大值。 初始化的时候从dp[1][0][i]开始,0是根据st数组的起始。 ...
分类:其他好文   时间:2017-08-23 19:08:47    阅读次数:195
374条   上一页 1 ... 12 13 14 15 16 ... 38 下一页
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!