题意:给出A,C,找出最小的C使得lcm(A,B)=C 思路:lcm=(a*b)/gcd,把等号两侧同时除以a得到lcm/a=b/gcd左侧是已知的,右侧的gcd是a的因子中的一个,直接枚举a的所有因子找到答案就行了。 1 #include<math.h> 2 #include<stdio.h> 3 ...
分类:
其他好文 时间:
2019-10-19 18:58:25
阅读次数:
103
莫队算法小结(待更新) [toc] 简单介绍 博客安利: 1. "OI Wiki" 2. "大米饼" 解决一类离线区间查询问题,分块思想,时间复杂度$O(n\sqrt n)$ 排序 读入的时候对整个数组进行分块,块大小一般使用$\sqrt n$,对询问操作排序的时候,先以块号为第一关键字,$r$为第 ...
分类:
编程语言 时间:
2019-10-19 12:51:49
阅读次数:
97
题意 求 $\sum_{i=1}^n \sum_{j=1}^n gcd(i,j)$. 分析 $$\begin{aligned}\sum_{i=1}^n \sum_{j=1}^n gcd(i,j) &= \sum_{i=1}^n \sum_{j=1}^n d[gcd(i, j)=d] \\&= \su ...
分类:
其他好文 时间:
2019-10-19 00:24:59
阅读次数:
76
回到主线程 延时执行 开启一个异步线程 开启一个同步线程 线程优先级 分组执行 串行队列:只有一个线程,加入到队列中的操作按添加顺序依次执行。 并发队列:有多个线程,操作进来之后它会将这些队列安排在可用的处理器上,同时保证先进来的任务优先处理。 信号量 oc中dispatch_group_enter ...
分类:
编程语言 时间:
2019-10-18 19:21:49
阅读次数:
134
补充下定理: 定理一:如果d = gcd(a, b),则必能找到正的或负的整数k和l,使d = a*k + b*l。 证明:由于 gcd(a, 0) = a,我们可假设b ≠ 0,这样通过连除我们能够写出 a = b*q1 + r1 b = r1*q2 + r2 r1 = r2*q3 + r3 …… ...
分类:
其他好文 时间:
2019-10-18 19:15:23
阅读次数:
75
Byteotian Cave的结构是一棵N个节点的树,其中某些点上面已经安置了烟火,现在需要点燃M个点上的引线引爆所有的烟火。某个点上的引线被点燃后的1单位时间内,在树上和它相邻的点的引线会被点燃。如果一个有烟火的点的引信被点燃,那么这个点上的烟火会爆炸。求引爆所有烟火的最短时间。1<=m<=n<= ...
分类:
其他好文 时间:
2019-10-18 11:03:26
阅读次数:
95
Luogu_P1072 Hankson 的趣味题 gcd "题目链接" 就是求 $gcd(x,a0)=a1$ $lcm(x,b0)=b1$ 的$x$合法的数量 首先有一个很显然的等式 $gcd(x/a1,a0/a1)=1$ 可以根据$gcd$的性质证出来 那么就剩下另一个等式了 $lcm(x,b0) ...
分类:
其他好文 时间:
2019-10-17 17:14:03
阅读次数:
75
10.17 进制转换 排序(归并排序,快速排序) 高精度 gcd ,快速幂 等常用函数,整理模板 素数筛 STL 字符串专题 前缀和与差分 10.18 链表 栈 队列 相关操作 10.19 ...
分类:
其他好文 时间:
2019-10-17 01:16:03
阅读次数:
74
Solution 上帝与集合的正确用法 题目大意:求$2^{2^{2^{2^{\ldots}}}}mod\;p$ 扩展欧拉定理 首先主角扩展欧拉定理: $$a^b \equiv \begin{cases} a^{b\;mod\;\phi(p)} & gcd(a,p)=1 \\ a^b & gcd(a ...
分类:
其他好文 时间:
2019-10-15 21:16:14
阅读次数:
104