转自穆晨 阅读目录 前言 算法原理 回归分类器的形式 最佳回归系数的确定 基于梯度上升法的最佳回归参数拟合 拟合结果展示 更好的求最值方法 - 随机梯度上升 小结 阅读目录 前言 算法原理 回归分类器的形式 最佳回归系数的确定 基于梯度上升法的最佳回归参数拟合 拟合结果展示 更好的求最值方法 - 随 ...
分类:
编程语言 时间:
2017-10-08 16:49:45
阅读次数:
206
整理一下之前所学过的关于回归问题的思路: 问题引入:房屋估价,给定新的房屋信息,预测出相应的房屋价格; 学习过程:构建模型h(θ); 线性回归:最小二乘法、梯度下降法、线性模型的概率解释; 局部加权回归:带权重的线性回归、权值的钟形函数; 逻辑回归:分类方法、梯度上升法、牛顿法、引出感知机学习算法; ...
分类:
其他好文 时间:
2016-11-03 01:53:41
阅读次数:
463
形式:
采用sigmoid函数:g(z)=11+e?zg(z)=\frac{1}{1+e^{-z}}
其导数为g′(z)=(1?g(z))g(z)g^\prime(z)=(1-g(z))g(z)
假设:
即:
若有m个样本,则似然函数形式是:
对数形式:
采用梯度上升法求其最大值
求导:
更新规则为:
可以发现,则个规则形式上和LMS更新规则是一样...
分类:
编程语言 时间:
2016-04-22 19:32:34
阅读次数:
314
这个系列是为了应对找工作面试时面试官问的算法问题,所以只是也谢算法的简要介绍,后期会陆续补充关于此
算法的常见面问题。
一、Logistic回归
先说下logistic回归,它是根据现有数据对分类边界建立回归公式,以此进行分类。其计算代价不高,易于实现与理解,但是容易欠拟合、分类精度不太高;
logistic回归可以看成是一种概率估计,使用的的是sigmioid函数,...
分类:
编程语言 时间:
2015-08-26 12:04:29
阅读次数:
286
《机器学习实战》第五章《Logistic回归》中讲到了梯度上升法,随机梯度上升法和改进的随机梯度上升法,下面把这几个算法思想总结一下。首先,梯度上升法比较简单,根据梯度上升的迭代公式计算出了回归系数。书中并没有采取最小二乘法之类的规则来作为迭代终止的条件,而是直接..
分类:
编程语言 时间:
2015-07-21 18:55:19
阅读次数:
241
根据李航博士总结的统计学习三要素方法=模型+策略+算法,对应于逻辑回归
模型=基于单极型函数(逻辑函数)的条件概率模型
策略=经验损失对应的训练样本先验概率最大化
算法=随机梯度上升法
逻辑回归MATLAB代码比较简单,如下所示,循环对所有的样本,进行梯度上升算法
function [w]=LogisticRegression(x,y,learningRate,m...
分类:
编程语言 时间:
2015-06-21 09:28:53
阅读次数:
624
随机梯度上升法--一次仅用一个样本点来更新回归系数(因为可以在新样本到来时对分类器进行增量式更新,因而属于在线学习算法)梯度上升法在每次更新回归系统时都需要遍历整个数据集,该方法在处理100个左右的数据集时尚可,但如果有数十亿样本和成千上万的特征,那么该方法的计算复杂度太高了。随机梯度上升算法伪代码...
分类:
其他好文 时间:
2015-01-20 20:05:00
阅读次数:
265
二种类别的点在平面上分布,我想找到一条直线,将平面划为两半边,每一边的点类别尽可能的统一,如何找到效果最佳的分界线,这就是最佳拟合问题,也叫作回归问题。 这次,代码很少。logRegres.py #?coding:utf-...
分类:
其他好文 时间:
2014-07-21 10:24:21
阅读次数:
321
回顾上次内容:http://blog.csdn.net/acdreamers/article/details/27365941
经过上次对Logistic回归理论的学习,我们已经推导出取对数后的似然函数为
现在我们的目的是求一个向量,使得最大。其中
对这个似然函数求偏导后得到...
分类:
其他好文 时间:
2014-06-01 04:34:43
阅读次数:
410