主要内容: 线性回归 定义与问题引入 损失函数 梯度下降 过拟合与正则化 逻辑回归 定义与问题引入 损失函数 梯度下降与正则化 线性回归 有监督学习= 学习样本为D={(x~i~,y~i~)}^N^~i=1~ 多变量情形: 损失函数 loss function: 梯度下降: 其中α为步长,很大 震荡 ...
分类:
其他好文 时间:
2020-05-17 17:27:48
阅读次数:
73
1.1为什么选择序列模型 (1)序列模型广泛应用于语音识别,音乐生成,情感分析,DNA序列分析,机器翻译,视频行为识别,命名实体识别等众多领域。 (2)上面那些问题可以看成使用(x,y)作为训练集的监督学习,但是输入与输出的对应关系有非常多的组合,比如一对一,多对多,一对多,多对一,多对多(个数不同 ...
分类:
其他好文 时间:
2020-05-17 10:33:22
阅读次数:
124
到目前为止,你已经见过一系列不同的学习算法。在监督学习中,许多监督学习算法的性能都非常类似。因此,重要的不是你该选择使用学习算法A还是学习算法B,而更重要的是,应用这些算法时,所使用的数据量。这就体现了你应用这些算法时的技巧。比如:你为学习算法所设计的特征量的选择,以及如何选择正则化参数,诸如此类的 ...
分类:
其他好文 时间:
2020-05-17 01:17:28
阅读次数:
119
1.理解分类与监督学习、聚类与无监督学习。 简述分类与聚类的联系与区别。 简述什么是监督学习与无监督学习。 对于分类来说,在对数据集分类时,我们是知道这个数据集是有多少种类的;而对于聚类来说,在对数据集操作时,我们是不知道该数据集包含多少类,我们要做的,是将数据集中相似的数据归纳在一起。他们都是对数 ...
分类:
编程语言 时间:
2020-05-13 20:34:52
阅读次数:
65
1.理解分类与监督学习、聚类与无监督学习。 简述分类与聚类的联系与区别。 简述什么是监督学习与无监督学习。 2.朴素贝叶斯分类算法 实例 利用关于心脏病患者的临床历史数据集,建立朴素贝叶斯心脏病分类模型。 有六个分类变量(分类因子):性别,年龄、KILLP评分、饮酒、吸烟、住院天数 目标分类变量疾病 ...
分类:
编程语言 时间:
2020-05-13 20:32:49
阅读次数:
79
1.理解分类与监督学习、聚类与无监督学习。 简述分类与聚类的联系与区别。 简述什么是监督学习与无监督学习。 2.朴素贝叶斯分类算法 实例 利用关于心脏病患者的临床历史数据集,建立朴素贝叶斯心脏病分类模型。 有六个分类变量(分类因子):性别,年龄、KILLP评分、饮酒、吸烟、住院天数 目标分类变量疾病 ...
分类:
编程语言 时间:
2020-05-13 18:36:51
阅读次数:
63
LDA原理 LDA思想 这里的LDA是指Linear Discriminant Analysis,简称LDA,全称线性判别分析。要与自然语言处理领域的LDA(Latent Dirichlet Allocation)隐含狄利克雷分布区分开来。 LDA是一种监督学习降维技术,它的数据集的每个样本是有类别 ...
分类:
其他好文 时间:
2020-05-13 17:17:16
阅读次数:
76
1.理解分类与监督学习、聚类与无监督学习。 简述分类与聚类的联系与区别。 简述什么是监督学习与无监督学习。 分类是为了确定点的类别,具体有哪些类别是已知的,是监督学习。 聚类是把点成若干类,事先是没有类别的,是一种无监督学习。 监督学习:从正确的例子中学习 无监督学习:缺乏足够的先验知识 2.朴素贝 ...
分类:
编程语言 时间:
2020-05-13 11:47:11
阅读次数:
73
1.理解分类与监督学习、聚类与无监督学习。 简述分类与聚类的联系与区别。 简述什么是监督学习与无监督学习。 分类与聚类的区别:是否有已知分类的条件。分类没有,聚类有。 监督学习:已知某些类别的情况下,即具有事先标记的数据,通过特征分析来学习的一类算法。 无监督学习:不具有事先标签的数据,缺乏先验知识 ...
分类:
编程语言 时间:
2020-05-13 00:25:07
阅读次数:
76
1.理解分类与监督学习、聚类与无监督学习。 简述分类与聚类的联系与区别。 联系:都是对数据进行划分的方法 区别:分类就是“贴标签”,在事先已有的类中按这些类的性质来进行划分,要做的就是将每一条记录分别属于哪一类标记出来,常用算法KNN,是一种有监督学习; 聚类是在事先没有类,没有训练条件的情况下,根 ...
分类:
编程语言 时间:
2020-05-12 20:35:39
阅读次数:
90