一.简介 xgboost在集成学习中占有重要的一席之位,通常在各大竞赛中作为杀器使用,同时它在工业落地上也很方便,目前针对大数据领域也有各种分布式实现版本,比如xgboost4j-spark,xgboost4j-flink等。xgboost的基础也是gbm,即梯度提升模型,它在此基础上做了进一步优化 ...
分类:
编程语言 时间:
2021-07-05 19:03:36
阅读次数:
0
来源:https://mp.weixin.qq.com/s/k8jj4meb3DKYCGUzaOGDAg 在 决策树进阶 中我们学习到了决策树的剪枝处理,对连续特征以及缺失值的处理。这篇文章来介绍下决策树在解决回归问题中的应用。前面我们知道 CART 能够解决分类问题,实际上它也是可以解决回归问题的 ...
分类:
其他好文 时间:
2021-06-05 17:42:41
阅读次数:
0
树回归 当回归的数据呈现非线性时,就需要使用树回归。 树回归的基本逻辑 遍历所有特征 针对某一特征,遍历该特征的所有值 针对某一特征值,进行划分数据,计算出划分数据之后的总方差, 若总方差最小,记下特征和特征值 当遍历完所有特征后,就能够获得最小方差的特征和特征值,并以此作为树的结点,划分左右子树, ...
分类:
其他好文 时间:
2020-09-07 19:22:59
阅读次数:
74
原文链接 http://tecdat.cn/?p=14056 本文为了说明回归树的构造(使用CART方法),考虑以下模拟数据集, > set.seed(1) > n=200 > X1=runif(n) > X2=runif(n) > P=.8*(X1<.3)*(X2<.5)+ + .2*(X1<.3 ...
分类:
编程语言 时间:
2020-07-10 15:40:29
阅读次数:
99
决策树 通常决策树主要有三种实现,分别是ID3算法,CART算法和C4.5算法。 随机森林的重点在于单个决策树是如何建造的 CART Classification And Regression Tree,即分类回归树算法,简称CART算法,它是决策树的一种实现. CART算法是一种二分递归分割技术, ...
分类:
其他好文 时间:
2020-07-10 00:28:24
阅读次数:
59
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第23篇文章,我们今天分享的内容是十大数据挖掘算法之一的CART算法。 CART算法全称是Classification and regression tree,也就是分类回归树的意思。和之前介绍的ID3和C4.5一样,C ...
分类:
编程语言 时间:
2020-06-06 13:03:09
阅读次数:
163
梯度提升树GBDT GBDT是Boosting家庭中,除AdaBoost外另一个重要的算法。算法思想同样是让本轮迭代找到的决策树的损失比上轮更小。 GBDT负梯度拟合 用损失函数负梯度来拟合本轮损失近似值,进而拟合一个CART回归树。第t轮的第i个样本的损失函数的负梯度表示为: $$ r_{ti}= ...
分类:
其他好文 时间:
2020-05-13 16:50:25
阅读次数:
58
1 简介 1.1 介绍 1.2 生成步骤 CART树算法由以下两步组成:(1)决策树生成:基于训练数据集生成决策树,生成的决策树要尽量大;(2)决策树剪枝:用验证数据集对己生成的树进行剪枝并选择最优子树,这时用损失函数址小作为剪枝的标准。 2 算法 2.1 回归树 对回归树用平方误差最小化准则,生成 ...
分类:
编程语言 时间:
2020-04-28 14:36:46
阅读次数:
113
本文链接:https://blog.csdn.net/koibiki/article/details/83588796收起论文连接:One Millisecond Face Alignment with an Ensemble of Regression Trees 1.简介本文也采用级联回归树。 ...
分类:
其他好文 时间:
2020-04-16 00:24:17
阅读次数:
82
4, GBDT和随机森林的相同点: 1、都是由多棵树组成2、最终的结果都是由多棵树一起决定 5,GBDT和随机森林的不同点: 1、组成随机森林的树可以是分类树,也可以是回归树;而GBDT只由回归树组成2、组成随机森林的树可以并行生成;而GBDT只能是串行生成 3、对于最终的输出结果而言,随机森林采用 ...
分类:
其他好文 时间:
2020-03-23 00:06:15
阅读次数:
111