直接给代码: 1 # -- coding: gbk -- 2 from sklearn.datasets import load_breast_cancer 3 from sklearn.tree import DecisionTreeClassifier 4 from sklearn.model_ ...
分类:
其他好文 时间:
2020-03-27 00:37:45
阅读次数:
170
""" 机器学习算法分类: 监督学习(有目标值) 分类(目标值是离散型数据):K-近邻算法、贝叶斯分类、决策树与随机森林、逻辑回归、神经网络 回归(目标值是连续型数据):线性回归、岭回归 无监督学习(无目标值):聚类 K-means 机器学习一般会把数据集划分为训练集(3/4)和测试集(1/4),可 ...
分类:
编程语言 时间:
2020-03-26 01:37:29
阅读次数:
103
随机森林 随机森林是集成算法的一种,是将多个决策树集成在一起通过对每棵树的结果进行表决进而组成一个强分类器的方法,可以处理分类问题及回归问题。 随机森林的构建过程: 从样本集中用采样选出N个样本; 从所有属性中随机选择M个属性,选择出最佳分割属性作为节点创建决策树; 重复执行以上两步,重复次数即为决 ...
分类:
其他好文 时间:
2020-03-15 22:04:47
阅读次数:
52
随机森林算法: 随机森林利用随机的方式将许多决策树组合成一个森林,每个决策树在分类的时候决定测试样本的最终类别 在Bagging策略的基础上进行修改后的一种算法 从样本集中用Bootstrap采样选出n个样本; 从所有属性中随机选择K个属性,选择出最佳分割属性作为节点创建决策树; 重复以上两步m次, ...
分类:
其他好文 时间:
2020-03-15 22:03:55
阅读次数:
106
所有机器学习模型都可以分为 有监督 的或 无监督 的。如果模型是监督模型,则将其再分类为回归模型或分类模型。我们将介绍这些术语的含义以及下面每个类别中对应的模型。 监督学习模型 监督学习涉及基于示例输入 输出对学习将输入映射到输出的功能。 例如,如果我有一个包含两个变量的数据集,即年龄(输入)和身高 ...
分类:
其他好文 时间:
2020-03-15 20:38:38
阅读次数:
93
随机森林和adaboost都是集成学习比较经典的模型 随机森林和adaboost所使用的思想不同 随机森林运用bagging的思想,相当于并行,利用随机的方式将许多决策树组合成一个森林,每个决策树在分类的时候决定测试样本的最终类别 adaboost运用boosting的思想,是一种迭代算法,针对同一 ...
分类:
其他好文 时间:
2020-03-15 20:30:34
阅读次数:
91
1.随机森林: 在机器学习中,随机森林是一个包含多个决策树的分类器, 并且其输出的类别是由个别树输出的类别的众数而定。在Bagging策略的基础上进行修改后的一种算法。 2.随机森林的特点 从样本集中用Bootstrap采样选出n个样本; 从所有属性中随机选择K个属性,选择出最佳分割属性作为节点创建 ...
分类:
其他好文 时间:
2020-03-15 20:26:44
阅读次数:
153
要对数据进行分类,涉及到通过选取什么样的特征对数据进行分类,比如将柚子和西瓜进行分类,可以选取(大小、颜色、甜度等特征) 决策树的功能就是判断使用哪个特征,然后选取他认为最好的特征对数据进行分类。 那么他是如何选取最好的特征呢? 就是通过信息熵来选取特征,求以每个特征来分类对应的信息熵(香农商),选 ...
分类:
其他好文 时间:
2020-03-15 14:56:18
阅读次数:
95
《机器学习入门》本书通过通俗易懂的语言,丰富的图示和经典的案例,让广大机器学习爱好者轻松入门机器学习MachineLearning,有效地降低了学习的门槛。本书共分11章节,覆盖的主要内容有机器学习概述、数据预处理、K近邻算法、回归算法、决策树、K-means聚类算法、随机森林、贝叶斯算法、支持向量机、神经网络(卷积神经网络、Keras深度学习框架)、人脸识别入门等。从最简单的常识出发来切入AI领
分类:
编程语言 时间:
2020-03-15 10:04:46
阅读次数:
77
数据挖掘入门系列教程(三点五)之决策树 本来还是想像以前一样,继续学习《 Python数据挖掘入门与实践 》的第三章“决策树”,但是这本书上来就直接给我怼了一大串代码,对于 基本上没有什么介绍,可直接把我给弄懵逼了,主要我只听过决策树还没有认真的了解过它。 这一章节主要是对决策树做一个介绍,在下一个 ...
分类:
其他好文 时间:
2020-03-14 01:25:19
阅读次数:
59