原文链接:https://www.mlpod.com/mlbase/23.html 三要素:方法=模型+策略+算法。 1.1 模型 在监督学习过程中,模型就是所要学习的条件概率分布或决策函数。假设空间用$\mathcal{F}$表示,假设空间可以定义为$$\mathcal{F} = \left\{ ...
分类:
其他好文 时间:
2018-09-02 02:09:13
阅读次数:
238
原文链接:https://www.mlpod.com/mlbase/66.html 1. 训练误差与测试误差 当损失函数给定时,基于损失函数的模型训练误差和魔性的测试误差就自然成为学习方法评估的标准。注意,统计学习方法具体采用的损失函数未必是评估时所使用的损失函数。 2. 过拟合与模型选择 当假设空 ...
分类:
其他好文 时间:
2018-09-02 02:08:11
阅读次数:
367
一、什么是支撑向量机SVM (Support Vector Machine) SVM(Support Vector Machine)指的是支持向量机,是常见的一种判别方法。在机器学习领域,是一个有监督的学习模型,通常用来进行模式识别、分类以及回归分析。 Vapnik等人在多年研究统计学习理论基础上对 ...
分类:
其他好文 时间:
2018-09-02 00:06:01
阅读次数:
842
逻辑斯谛回归(logistic regression)是统计学习中的经典分类方法 最大熵是概率模型学习的一个准则,被推广到分类问题后可得到最大熵模型(Maximum Entropy Model) 逻辑斯谛回归模型与最大熵模型都属于对数线性模型,而对数线性模型又是广义线性模型的一种。 科普一下:狭义的 ...
分类:
其他好文 时间:
2018-08-29 01:09:36
阅读次数:
452
通过介绍感知机的模型、策略和算法三要素,以及算法的原始形式和对偶形式,对感知机这一二分类线性分类器做了一定的讲解。 ...
分类:
其他好文 时间:
2018-08-24 19:28:39
阅读次数:
193
逻辑斯蒂回归: 逻辑斯蒂回归是统计学习中的经典分类方法,属于对数线性模型。logistic回归的因变量可以是二分类的, 也可以是多分类的 基本原理 logistic 分布 折X是连续的随机变量,X服从logistic分布是指X具有下列分布函数和密度函数: 其中为位置参数,为形状参数。与图像如下,其中 ...
分类:
其他好文 时间:
2018-08-22 14:03:12
阅读次数:
323
一提到机器学习,就不得不提李航的这本《统计学习方法》,回家这几日,把这本书的前九章看完了,因为后面两章HMM和CRF在之前就已经看过了,简单写一下自己的一点新认识。 这本书基本上是在围绕有监督来进行的,所谓有监督与无监督的区别:数学角度上来分析是是否知道P(Y|X),有监督是知道部分X对应的Y值,来 ...
分类:
其他好文 时间:
2018-08-18 00:44:12
阅读次数:
166
神经网络简介 典型的深度学习(Deep Learning)模型就是很深层的神经网络模型,因此可以说深度学习就是神经网络的再发展。神经网络最早追溯到1950s提出的感知机,可以算是神经网络发展的第一次高潮;但在1969年,Marvin Minsky和Seymour Papert指出单层的神经网络无法解 ...
分类:
其他好文 时间:
2018-08-17 21:33:58
阅读次数:
246
(本章主要参考李航老师的《统计学习方法》,其次是周志华老师的《机器学习》。通过自己的阅读,提炼出书中的知识点以及些许自己部分的理解(可能不到位),巩固所学知识。) 统计学习方法概论 本章简要叙述统计学习方法的一些基本概念.首先许如统计学习的定义、研究对象与方法;然后叙述监督学习;接着提出统计学习方法 ...
分类:
其他好文 时间:
2018-08-03 20:17:43
阅读次数:
184
隐马尔科夫模型是可用于标注问题的统计学习模型,描述由隐藏的马尔可夫链随机生成观测序列的过程,属于生成模型。隐马尔科夫模型由初始概率分布、状态转移概率分布以及观测概率分布确定。 1、隐马尔科夫模型是关于时序的概率模型,描述由一个隐藏的马尔可夫链随机生成不可观测的状态的序列,再由各个状态随机生成一个观测 ...
分类:
其他好文 时间:
2018-07-20 22:36:24
阅读次数:
169