当做重要决定时,我们可能会考虑吸取多个专家而不只是一个人的意见。机器学习处理问题也是这样,这就是元算法(meta-algorithm)背后的思路。 元算法是对其他算法进行组合的一种方式,其中最流行的一种算法就是AdaBoost算法。某些人认为AdaBoost是最好的监督学习的方法,所以该方法是机器学 ...
分类:
编程语言 时间:
2016-11-28 00:57:50
阅读次数:
267
利用adaboost训练人脸分类器时,主要做几件事,准备正负样本,生成正样本pos.vec文件,生成负样本列表文件,训练等,具体可以看这几个博客:
http://blog.csdn.net/u013...
分类:
其他好文 时间:
2016-11-02 18:16:45
阅读次数:
493
Adaboost原理 Adaboost(AdaptiveBoosting)是一种迭代算法,通过对训练集不断训练弱分类器,然后把这些弱分类器集合起来,构成强分类器。adaboost算法训练的过程中,初始化所有训练样例的具有相同的权值重,在此样本分布下训练出一个弱分类器,针对错分样本加大对其对应的权值, ...
分类:
其他好文 时间:
2016-10-26 20:11:12
阅读次数:
258
一、简介: adaboost分类器由级联分类器构成,"级联"是指最终的分类器是由几个简单分类器级联组成。在图像检测中,被检窗口依次通过每一级分类器,这样在前面几层的检测中大部分的候选区域就被排除了,全部通过每一级分类器检测的区域即为目标区域。 分类器训练完以后,就可以应用于输入图像中的感兴趣区域的检 ...
分类:
其他好文 时间:
2016-10-26 19:54:42
阅读次数:
323
在之前的决策树到集成学习里我们说了决策树和集成学习的基本概念(用了adaboost昨晚集成学习的例子),其后我们分别学习了决策树分类原理和adaboost原理和实现, 上两篇我们学习了cart(决策分类树),决策分类树也是决策树的一种,也是很强大的分类器,但是cart的深度太深,我们可以指定cart ...
分类:
其他好文 时间:
2016-10-24 00:03:52
阅读次数:
422
前面我们了解了决策树和adaboost的决策树墩的原理和实现,在adaboost我们看到,用简单的决策树墩的效果也很不错,但是对于更多特征的样本来说,可能需要很多数量的决策树墩 或许我们可以考虑使用更加高级的弱分类器,下面我们看下CART(Classification And Regression ...
分类:
其他好文 时间:
2016-10-19 23:54:30
阅读次数:
304
上两篇说了决策树到集成学习的大概,这节我们通过adaboost来具体了解一下集成学习的简单做法。 集成学习有bagging和boosting两种不同的思路,bagging的代表是随机森林,boosting比较基础的adaboost,高级一点有GBDT,在这里我也说下我理解的这两个做法的核心区别: 随 ...
分类:
其他好文 时间:
2016-10-18 02:33:46
阅读次数:
242
Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值 ...
分类:
其他好文 时间:
2016-10-10 23:49:15
阅读次数:
176
0 引言 一直想写Adaboost来着,但迟迟未能动笔。其算法思想虽然简单“听取多人意见,最后综合决策”,但一般书上对其算法的流程描述实在是过于晦涩。昨日11月1日下午,邹博在我组织的机器学习班第8次课上讲决策树与Adaboost,其中,Adaboost讲得酣畅淋漓,讲完后,我知道,可以写本篇博客了 ...
分类:
编程语言 时间:
2016-09-27 19:33:08
阅读次数:
221