https://zhuanlan.zhihu.com/p/26293316 比如, 我已经初步训练好了一个模型,现在我想用这个模型从海量的无标记数据集挖掘出某一类数据A,并且想要尽量不包含其他所有类B 但我挖掘出的结果必然包含错误的,我拿出的A越多,同时附带的分类错数据B也就越多, 一般,拿出的A占 ...
分类:
编程语言 时间:
2020-04-22 16:23:54
阅读次数:
313
ROC曲线:全称 Receiver Operating Characteristic曲线,即受试者工作特性曲线,在机器学习领域常用于判断分类器的好坏。 要了解ROC曲线,首先要了解该曲线的横纵坐标 —— FPR(1-特异度)和TPR(召回率或者灵敏度)。 1. 基本概念 —— 混淆矩阵 绘制混淆矩阵 ...
分类:
其他好文 时间:
2020-04-06 21:02:44
阅读次数:
107
召回率表示的是样本中的某类样本有多少被正确预测了。比如对与一个分类模型,A类样本包含A0个样本,预测模型分类结果是A类样本中有A1个正样本和A2个其他样本,那么该分类模型的召回率就是 A1/A0,其中 A1+A2=A0 准确率表示的是所有分类中被正确分类的样本比例,比如对于一个分类模型,样本包含A和 ...
分类:
其他好文 时间:
2020-03-22 22:28:21
阅读次数:
106
ROC曲线 ROC曲线是二元分类器中常用的工具,它的全称是 Receiver Operating Characteristic,接收者操作特征曲线。它与precision/recall 曲线特别相似,但是它画出的是true positive rate(recall的另一种叫法)对应false pos ...
分类:
其他好文 时间:
2020-02-18 20:11:29
阅读次数:
280
大纲: 算法分类有监督学习与无监督学习分类问题与回归问题生成模型与判别模型强化学习评价指标准确率与回归误差ROC曲线交叉验证模型选择过拟合与欠拟合偏差与方差正则化 半监督学习归类到有监督学习中去。 有监督学习大部分问题都是分类问题,有监督中的分类问题分为生成式模型和判别模型。 分类问题常用的评价指标 ...
分类:
其他好文 时间:
2019-11-30 18:55:39
阅读次数:
98
在一般认知中,用模型对测试集进行分类预测,结果应该是X或者X'(也可以说是或者否)。根据混淆矩阵算出TP、FP、TN、FN,进一步算出TPR、FPR。一个测试集只会有一对TPR/FPR值,那么ROC曲线就只会有一个点,何谈曲线之说?难道是用多个测试集得到多对TPR/FPR值,来绘制ROC曲线吗?实则 ...
分类:
其他好文 时间:
2019-10-27 12:47:31
阅读次数:
464
原文链接:http://tecdat.cn/?p=6310 在讨论ROC曲线之前,首先让我们在逻辑回归的背景下考虑校准和区分之间的区别。 良好的校准是不够的 对于模型协变量的给定值,我们可以获得预测的概率。如果观察到的风险与预测的风险(概率)相匹配,则称该模型已被很好地校准。也就是说,如果我们要分配 ...
分类:
编程语言 时间:
2019-09-04 17:40:30
阅读次数:
135
精确率与召回率,ROC曲线与PR曲线 链接:https://blog.csdn.net/CYJ2014go/article/details/84537317 [总结]ROC曲线、AUC、准确度、召回率 链接:https://blog.csdn.net/bra_ve/article/details/8 ...
分类:
其他好文 时间:
2019-09-01 16:16:48
阅读次数:
105
背景 魔镜是数据产品研发部基于大数据平台开发的一套可视化数据智能平台。传统机器学习建模流程对非数据科学专业人员来说,整体门槛较高,其中主要体现在几个方面: 1. 机器学习概念较为抽象 比如训练集、验证集、测试集、特征、维度、标签泄露、欠拟合、过拟合、学习曲线、验证曲线、ROC曲线、混淆矩阵等等,除了 ...
分类:
其他好文 时间:
2019-08-04 10:45:51
阅读次数:
164