在 聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了具体说明。本文主要针对怎样用EM算法在混合高斯模型下进行聚类进行代码上的分析说明。1. GM...
分类:
编程语言 时间:
2015-06-23 17:21:55
阅读次数:
258
在 聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了具体说明。本文主要针对怎样用EM算法在混合高斯模型下进行聚类进行代码上的分析说明。1. GM...
分类:
编程语言 时间:
2015-06-09 19:40:33
阅读次数:
1154
摘要 本文通过opencv来实现一种前景检测算法——GMM,算法采用的思想来自论文[1][2][4]。在进行前景检测前,先对背景进行训练,对图像中每个背景采用一个混合高斯模型进行模拟,每个背景的混合高斯的个数可以自适应。然后在测试阶段,对新来的像素进行GMM匹配,如果该像素值能够匹配其中一个高斯,....
分类:
编程语言 时间:
2015-05-11 12:16:51
阅读次数:
355
Graph Cut的目标和背景的模型是灰度直方图,Grab Cut取代为RGB三通道的混合高斯模型GMM;建立模型是为了计算一个像素点分别属于目标和背景的概率,介个是为了建图的时候确定Gibbs能量的区域能量项,即图的t-link的权值。
3.1T-Link
单分布高斯背景模型认为,对一个背景图像,特定像素亮度的分布满足高斯分布,即对背景图像B,(x,y)点的亮度满足:IB(x,y) ~ N(...
分类:
其他好文 时间:
2015-04-21 18:13:24
阅读次数:
388
因为监控发展的需求,目前前景检测的研究还是很多的,也出现了很多新的方法和思路。个人了解的大概概括为以下一些:帧差、背景减除(GMM、CodeBook、 SOBS、 SACON、 VIBE、 W4、多帧平均……)、光流(稀疏光流、稠密光流)、运动竞争(Motion Competition)、运动模版(...
分类:
其他好文 时间:
2015-04-17 13:15:00
阅读次数:
144
前景提取和目标检测当观察场景的是一个固定的相机,背景几乎保持不变。在这种情况下,感兴趣的元素是在场景中运动的物体。为了提取出这些前景物体,我们需要对背景建模,然后将当前帧的模型与背景模型进行比较,以检测前景物体。前景提取是智能监控应用的基础步骤。
OpenCV的video module中包含了几种较为常用的背景减除方法,其中混合高斯模型(Gaussian of Mixture Models, GM...
分类:
其他好文 时间:
2015-04-06 21:52:46
阅读次数:
446
本节课内容: 因子分析 ---因子分析中的EM步骤的推导过程 主成份分析:有效地降低维度的方法 因子分析 混合高斯模型的问题 接下来讨论因子分析模型,在介绍因子分析模型之前,先看高斯分布的另一种写法,该写法是推导因子分析模型的基础。 高斯分布的矩阵写法 因子分析模型 因子分析模型的推导 EM 求解参...
分类:
其他好文 时间:
2015-04-06 12:50:22
阅读次数:
140
本节内容: 1、混合高斯模型; 2、将混合高斯模型应用到混合贝叶斯模型;(应用:文本聚类) 3、结合EM算法,讨论因子分析算法; 4、高斯分布的有用性质。混合高斯模型将一般化的EM算法流程(下载笔记)应用到混合高斯模型因子分析模型因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即...
分类:
其他好文 时间:
2015-04-02 14:44:36
阅读次数:
298
转自:http://blog.csdn.net/carson2005/article/details/7467891运动目标检测可以分为摄像机固定和摄像机运动两类;对于摄像机运动情况下的运动目标检测,光流法是比较常用的解决方法,通过求解偏微分方程求得图像序列的光流场,从而预测摄像机的运动状态。对于摄...
分类:
其他好文 时间:
2015-03-20 20:30:02
阅读次数:
165
转自: http://blog.csdn.net/jwh_bupt/article/details/7663885聚类系列:聚类(序)----监督学习与无监督学习聚类(1)----混合高斯模型 Gaussian Mixture Model 聚类(2)----层次聚类 Hierarchical Clu...
分类:
其他好文 时间:
2015-03-04 16:34:38
阅读次数:
144