转自:https://zhuanlan.zhihu.com/p/26499443 生成对抗网络GAN是由蒙特利尔大学Ian Goodfellow教授和他的学生在2014年提出的机器学习架构。 要全面理解生成对抗网络,首先要理解的概念是监督式学习和非监督式学习。监督式学习是指基于大量带有标签的训练集与 ...
分类:
Web程序 时间:
2017-06-21 21:57:55
阅读次数:
329
现有的机器学习算法根据模型的学习过程大致可以分为四类:监督式学习,无监督式学习,半监督式学习和增强学习。 ① 监督式学习:从标记好的训练数据中进行模型的训练,常用来做分类和回归,例如逻辑回归、反向神经网络; ② 无监督式学习:根据数据的特征直接对数据的结构和数值进行归纳,常用来做聚类,例如周知的K- ...
分类:
其他好文 时间:
2017-06-16 23:02:32
阅读次数:
359
在机器学习中,监督式学习(Supervised Learning)通过定义一个模型,并根据训练集上的数据估计最优参数。梯度下降法(Gradient Descent)是一个广泛被用来最小化模型误差的参数优化算法。梯度下降法通过多次迭代,并在每一步中最小化成本函数(cost function)来估计模型 ...
分类:
编程语言 时间:
2017-01-03 13:01:15
阅读次数:
1420
反向传播算法(Back-Propagtion Algorithm)即BP学习属于监督式学习算法,是非常重要的一种人工神经网络学习方法,常被用来训练前馈型多层感知器神经网络。 一、BP学习原理 1、前馈型神经网络 是指网络在处理信息时,信息只能由输入层进入网络,随后逐层向前进行传递,一直到输出层,网络 ...
分类:
其他好文 时间:
2016-12-18 23:35:03
阅读次数:
306
在机器学习表现不佳的原因要么是过度拟合或欠拟合数据。 机器学习中的逼近目标函数过程 监督式机器学习通常理解为逼近一个目标函数(f)(f),此函数映射输入变量(X)到输出变量(Y). Y=f(X)Y=f(X) 这种特性描述可以用于定义分类和预测问题和机器学习算法的领域。 从训练数据中学习目标函数的过程 ...
分类:
编程语言 时间:
2016-11-13 17:10:10
阅读次数:
240
无监督式机器学习的两大类问题:聚类问题和Autoencoder问题,聚类问题解决的其实是模糊...
分类:
其他好文 时间:
2016-11-02 18:16:08
阅读次数:
263
将Mahout on Spark 中的机器学习算法和MLlib中支持的算法统计如下: 主要针对MLlib进行总结 分类与回归 分类和回归是监督式学习; 监督式学习是指使用有标签的数据(LabeledPoint)进行训练,得到模型后,使用测试数据预测结果。其中标签数据是指已知结果的特征数据。 分类和回 ...
分类:
其他好文 时间:
2016-09-24 01:57:49
阅读次数:
250
第一层、了解SVM 1.0、什么是支持向量机SVM 要明白什么是SVM,便得从分类说起。 分类作为数据挖掘领域中一项非常重要的任务,它的目的是学会一个分类函数或分类模型(或者叫做分类器),而支持向量机本身便是一种监督式学习的方法(至于具体什么是监督学习与非监督学习,请参见此系列Machine L&D ...
分类:
其他好文 时间:
2016-09-04 17:35:57
阅读次数:
230
学习方式
根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。
监督式学习:
在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,...
分类:
其他好文 时间:
2016-07-01 16:26:11
阅读次数:
197
Support vector machines 支持向量机,简称SVM 分类算法的目的是学会一个分类函数或者分类模型(分类器),能够把数据库中的数据项映射给定类别中的某一个,从而可以预测未知类别。 SVM是一种监督式学习的方法。 支持向量:支持或支撑平面上把两类类别划分开来的超平面的向量点 机:就是 ...
分类:
编程语言 时间:
2016-06-27 16:56:00
阅读次数:
160