mobius反演。。。 ∏ni=1∏mj=1fi[gcd(i,j)] ∏nk=1fi[k]∑ni=1∑mj=1[gcd(i,j)=k] 设f(d)=∑ni=1∑mj=1[gcd(i,j)=k] ,表示最大公约数为k的数对数 F(d)=?nd???md? 表示公约数为k的数对数 根据莫比乌斯反演的公式 ...
分类:
其他好文 时间:
2017-04-12 23:13:55
阅读次数:
348
Description 小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些 数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而 这丝毫不影响他对其他数的热爱。 这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不能送一 个小X讨厌的数。他列出了所有小X ...
分类:
其他好文 时间:
2017-04-09 12:53:42
阅读次数:
214
题目来源于糖教主浅谈一类积性函数的前缀和... 51Nod 1244 莫比乌斯函数之和 考虑$\mu(x)$的性质:$[n==1]=\sum _{d\mid n} \mu(d)$ 可以用上面哪个公式来推导: $f(n)=\sum _{i=1}^{n}$ $1=\sum _{i=1}^{n} [i== ...
分类:
其他好文 时间:
2017-04-09 11:00:01
阅读次数:
225
思路: $\Sigma_{i=1}^n\Sigma_{j=1}^mgcd(i,j)==p(p是素数)$ $\Sigma_{p是素数}^{p<=n}\Sigma_{i=1}^{\lfloor \frac{n}{p} \rfloor}\Sigma_{j=1}^{\lfloor \frac{m}{p} \ ...
分类:
其他好文 时间:
2017-04-08 00:32:51
阅读次数:
230
题意: 思路:如上 From http://blog.csdn.net/regina8023/article/details/44243911 最后的F(x,y)的推法和求gcd(x,y)=1的(x,y)对数差不多,只不过在推导过程中把原来1的地方换成x*y。 那么我们预处理出i^2*u[i]的前缀 ...
分类:
其他好文 时间:
2017-04-05 21:48:09
阅读次数:
194
YY的GCD Description 求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对k。 求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对k。 求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对k。 ...
分类:
其他好文 时间:
2017-04-05 16:58:54
阅读次数:
268
题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d, 且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。 1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000 思路:第一题反演…… 利用容斥原理将原询问拆成4个,问 ...
分类:
其他好文 时间:
2017-04-04 21:38:56
阅读次数:
281
Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。 Input 第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k 第一行一个整数n,接下来 ...
分类:
其他好文 时间:
2017-04-02 19:16:27
阅读次数:
156
解题思路类似莫比乌斯函数之和 题目大意:求[1,n]内的欧拉函数$\varphi$之和。($n<=2*10^{9}$) 思路:令$ M(n)=\sum_{i=1}^{n}\varphi (i) $,题目所求即为$ M(n) $。 由于$ \sum_{d|n} \varphi (d)=n $ ,所以$ ...
分类:
其他好文 时间:
2017-04-02 17:33:14
阅读次数:
308
Gcd Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对(x,y)有多少对. 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对(x,y)有多少对. Input 一个整数N 一个整数N Output 如题 如题 Sample Input 4 Sa ...
分类:
其他好文 时间:
2017-04-02 16:17:38
阅读次数:
247