1. 定义 如果对于随机变量X的分布函数F(x),存在非负函数f(x),使得对于任意实数有 则称X为连续型随机变量,其中F(x)称为X的概率密度函数,简称概率密度。(f(x)>=0,若f(x)在点x处连续则F(x)求导可得)f(x)并没有很特殊的意义,但是通过其值得相对大小得知,若f(x)越大,对于 ...
分类:
其他好文 时间:
2017-11-01 18:52:20
阅读次数:
133
目录 一、 概率公理及推论... 2 1. 联合概率... 2 2. 条件概率... 2 3. 全概率公式... 2 4. 贝叶斯公式... 2 二、 随机变量及其分布... 2 1. 随机变量... 2 2. 累积分布函数CDF. 2 3. 概率函数pmf2 4. 概率密度函数pdf3 5. 随机 ...
分类:
其他好文 时间:
2017-10-06 23:11:38
阅读次数:
288
首先正态分布的概率密度函数为: P{|X-μ|<σ}=2Φ(1)-1=0.6826, P{|X-μ|<2σ}=2Φ(2)-1=0.9544, P{|X-μ|<3σ}=2Φ(3)-1=0.9974 由于“小概率事件”和假设检验的基本思想 “小概率事件”通常指发生的概率小于5%的事件,认为在一次试验中该 ...
分类:
其他好文 时间:
2017-09-27 20:34:24
阅读次数:
182
概率密度函数 在正态分布中,通过查看某个值在 x 轴上的位置,即标准偏差,我们能够确定小于或大于任何值的百分比,接下来将学习如何计算这些百分比。请注意,我们使用的是理论曲线来绘制数据模型,该曲线下的面积是 1,因为它是用分布数据的相对频率(即比例)来绘制数据模型,该曲线叫做概率密度函数,通常缩写为 ...
分类:
其他好文 时间:
2017-09-27 10:14:34
阅读次数:
145
概率分布函数. Accumulative Distribution Function. ADF P(x)=Prob(X<x)P(x)=Prob(X<x) XX可以是连续的, 也可以是离散的随机变量. 概率密度函数. Probability Density Function. PDF. 为连续随机变量 ...
分类:
其他好文 时间:
2017-07-20 10:14:09
阅读次数:
190
Gaussian Mixture Model (GMM)。事实上,GMM 和 k-means 很像,不过 GMM 是学习出一些概率密度函数来(所以 GMM 除了用在 clustering 上之外,还经常被用于 density estimation ),简单地说,k-means 的结果是每个数据点被 ...
分类:
其他好文 时间:
2017-05-13 15:21:16
阅读次数:
263
我们能够得到其统计概率密度例如以下: 这样我们就知道该概率密度曲线大致符合正态分布。例如以下图所看到的 大概能够看出它在中心非常集中,边缘非常少,我们能够假定它服从高斯分布(正态分布),其概率密度函数如下: 我们能够得到其统计概率密度例如以下: 这样我们就知道该概率密度曲线大致符合正态分布。例如以下 ...
分类:
其他好文 时间:
2017-05-07 17:38:11
阅读次数:
133
正态分布(Normal distribution)又名高斯分布(Gaussiandistribution)。若随机变量X服从一个数学期望为μ、方差为σ^2的高斯分布。记为N(μ。σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。我们通常所说的标准正态分布是μ = ...
分类:
编程语言 时间:
2017-04-12 14:52:35
阅读次数:
300
正态分布(Normal distribution)又名高斯分布(Gaussian distribution) 若随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布,记为: 则其概率密度函数为 正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。我们通常所说的标准正态分布是μ = 0,σ ...
分类:
其他好文 时间:
2017-03-10 13:23:00
阅读次数:
201
贝叶斯分类的基础——贝叶斯定理 这个定理解决了现实生活里经常遇到的问题:已知某条件概率(概率密度函数),如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。这里先解释什么是条件概率: 表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。其基 ...
分类:
其他好文 时间:
2017-03-09 15:18:44
阅读次数:
231