# -*- coding: utf-8 -*- """ Created on Mon Aug 07 23:40:13 2017 @author: mdz """ import numpy as np def loadData(): vocabList=[['my', 'dog', 'has', 'f... ...
分类:
编程语言 时间:
2017-08-08 20:02:49
阅读次数:
240
贝叶斯定理: 其中: 表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。其基本求解公式为:。 ...
分类:
其他好文 时间:
2017-08-07 18:26:38
阅读次数:
103
作者: 寒小阳 && 龙心尘 时间:2016年2月。 出处:http://blog.csdn.net/han_xiaoyang/article/details/50629608 http://blog.csdn.net/longxinchen_ml/article/details/50629613 ...
分类:
其他好文 时间:
2017-08-06 13:55:00
阅读次数:
267
这篇博客是关于机器学习中基于概率论的分类方法--朴素贝叶斯,内容包括朴素贝叶斯分类器,垃圾邮件分类,解析RSS源数据以及用朴素贝叶斯来分析不同地区的态度. ...
分类:
编程语言 时间:
2017-08-03 00:51:05
阅读次数:
202
我们这个系列主要为了了解并会使用Accord.NET中机器学习有关算法,因此主要关注的是算法针对的的问题,算法的使用。所以主要以代码为主,通过代码来学习,在脑海中形成一个轮廓。下面就言归正传,开始贝叶斯分类器的学习。 朴素贝叶斯分类器,一个基于贝叶斯理论的简单概率分类器。简单的说,贝叶斯理论是独立特 ...
分类:
Web程序 时间:
2017-07-27 21:19:30
阅读次数:
209
1、朴素贝叶斯算法介绍 一个待分类项x=(a,b,c...),判断x属于y1,y2,y3...类别中的哪一类。 贝叶斯公式: 算法定义如下: (1)、设x={a1, a2, a3, ...}为一个待分类项,而a1, a2, a3...分别为x的特征 (2)、有类别集合C={y1, y2, y3, . ...
分类:
编程语言 时间:
2017-07-26 00:21:26
阅读次数:
192
贝叶斯学习方法中有用性非常高的一种为朴素贝叶斯学习期,常被称为朴素贝叶斯分类器。在某些领域中与神经网络和决策树学习相当。尽管朴素贝叶斯分类器忽略单词间的依赖关系。即如果全部单词是条件独立的,但朴素贝叶斯分类在实际应用中有非常出色的表现。 朴素贝叶斯文本分类算法伪代码: 朴素贝叶斯文本分类算法流程: ...
分类:
其他好文 时间:
2017-07-23 13:29:59
阅读次数:
199
参考文献 从贝叶斯定理说开去 关键词:逆向概率;先验概率;后验概率 我所理解的贝叶斯定理--知乎专栏 关键词:医院病症检测中的真假阳性 似然与极大似然估计--知乎专栏 关键词:似然与概率的区别 ...
分类:
其他好文 时间:
2017-07-16 12:30:20
阅读次数:
128
今天稍微学了一下概率论,这里简单总结一下贝叶斯公式 因为是初学,所以整理的东西可能有错误orz 一、贝叶斯公式 其实就是由全概率公式推出来的 贝叶斯公式实际上是求出一个事件C的后验概率 首先给出样本空间A的若干个划分Bi,最后发生了结果C 那么可以得到下图 那么先验概率实际上就是p(B),后验概率是 ...
分类:
其他好文 时间:
2017-07-04 01:00:47
阅读次数:
189
贝叶斯定理 贝叶斯定理是通过对观测值概率分布的主观判断(即先验概率)进行修正的定理,在概率论中具有重要地位。 先验概率分布(边缘概率)是指基于主观判断而非样本分布的概率分布,后验概率(条件概率)是根据样本分布和未知参数的先验概率分布求得的条件概率分布。 贝叶斯公式: 变形得: 其中 P(A)是A的先 ...
分类:
编程语言 时间:
2017-06-05 23:50:45
阅读次数:
268