系列文章目录: 感知机 线性回归 非线性问题 多项式回归 岭回归 逻辑回归 算法介绍 今天我们一起来学习使用非常广泛的分类算法:逻辑回归,是的,你没有看错,虽然它名字里有回归,但是它确实是个分类算法,作为除了感知机以外,最最最简单的分类算法,下面我们把它与感知机对比来进行学习; 从决策边界上看 感知 ...
分类:
编程语言 时间:
2021-06-24 18:35:36
阅读次数:
0
1. 阐述Hadoop生态系统中,HDFS, MapReduce, Yarn, Hbase及Spark的相互关系,为什么要引入Yarn和Spark。 HDFS是Hadoop体系中数据存储管理的基础,它是一个高度容错的系统,能检测和应对硬件故障,在低成本的通用硬件上运行。 HBase构建在HDFS之上 ...
分类:
其他好文 时间:
2021-06-07 20:05:58
阅读次数:
0
阅读目录 1. 批量梯度下降法BGD 2. 随机梯度下降法SGD 3. 小批量梯度下降法MBGD 4. 总结 在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练。其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点。 下面我们以线性回归算法来对三种梯度下降法进 ...
分类:
其他好文 时间:
2021-03-18 14:27:25
阅读次数:
0
WEKA的全名是怀卡托智能分析环境(WaikatoEnvironmentforKnowledgeAnalysis),同时weka也是新西兰的一种鸟名,而WEKA的主要开发者来自新西兰。WEKA作为一个公开的数据挖掘工作平台,集合了大量能承担数据挖掘任务的机器学习算法,包括对数据进行预处理,分类,回归、聚类、关联规则以及在新的交互式界面上的可视化。如果想自己实现数据挖掘算法的话,可以参考weka的接
分类:
其他好文 时间:
2021-01-02 11:36:56
阅读次数:
0
本文来自TheLearningMachine——一个开放源代码的新项目,该项目旨在为不同背景的人群创建交互式路线图,其中包含对概念、方法、算法及其在Python或R中的代码里实现所有的解释。随机森林随机森林是一种灵活的、便于使用的机器学习算法,即使没有超参数调整,大多数情况下也会带来好的结果。它可以用来进行分类和回归任务。通过本文,你将会学习到随机森林算法是如何解决分类和回归问题的。为了理解什么是
分类:
编程语言 时间:
2020-12-24 12:40:23
阅读次数:
0
图源:pixabay作为一切科学的基础,数学在数据科学领域也占据着重要地位。如果你是一名数据科学爱好者,一定想过这些问题:·我可以在几乎没有数学背景的情况下,成为一名数据科学家吗?·在数据科学中,哪些基本的数学技能是重要的?有很多好用的包可以用来构建预测模型,或生成数据可视化。一些最常用的描述性分析和预测性分析包包括:Ggplot2、Matplotlib、Seaborn、Scikit-learn、
分类:
其他好文 时间:
2020-12-22 11:40:33
阅读次数:
0
图源:unsplash任意的机器学习问题都可以应用多种算法,生成多种模型。例如,垃圾邮件检测分类问题可以使用多种模型来解决,包括朴素贝叶斯模型、逻辑回归模型和像BiLSTMs这样的深度学习技术。拥有丰富的选择是好的,但难点在于,如何决定在生产中实现哪个模型。虽然我们有许多性能指标来评估一个模型,但为每个问题实现每个算法是不明智的。这需要大量的时间和大量的工作,因此,知道如何为特定的任务选择正确的算
分类:
编程语言 时间:
2020-12-21 11:49:01
阅读次数:
0
文章主要目录如下:1.批量梯度下降法BGD原理讲解2.随机梯度下降法SGD原理讲解3.小批量梯度详解MBGD原理讲解4.具体实例以及三种实现方式代码详解5.三种梯度下降法的总结在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练。其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点。下面我们以线性回归算法来对三种梯度下降法进行比较。一般线性回归函数的假设函数为
分类:
其他好文 时间:
2020-11-27 11:55:19
阅读次数:
30
机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。本文为您总结一下常见的机器学习算法,以供您在工作和学习中参考。机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性。学习方式根据数据类型的不同,对一个问题的建模有不同的方式
分类:
编程语言 时间:
2020-11-27 11:25:54
阅读次数:
12
在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练。其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点。下面我们以线性回归算法来对三种梯度下降法进行比较。一般线性回归函数的假设函数为:对应的损失函数为:(这里的1/2是为了后面求导计算方便)下图作为一个二维参数(theta0,theta1)组对应能量函数的可视化图:下面我们来分别讲解三种梯度下降法1批量梯度
分类:
其他好文 时间:
2020-11-27 10:49:35
阅读次数:
5