目标检测,即在一幅图里框出某个目标位置.有2个任务. 定位出目标的边界框 识别出边界框内的物体的类别 Sliding window detectors 一种暴力的目标检测方法就是使用滑动窗口,从左到右,从上到下扫描图片,然后用分类器识别窗口中的目标.为了检测出不同的目标,或者同一目标但大小不同,必须 ...
分类:
其他好文 时间:
2019-06-14 14:50:31
阅读次数:
203
最近在看清华大学数据挖掘导论,图个自己复习省事,把学的东西整理在这里,也希望本菜鸡的整理对一些童鞋有帮助吧。 分类问题: 定义:给定训练集:{(x1,y1),...,(xn,yn)},生成将任何未知对象xi映射到其类标签yi的分类器(函数)。 图示: 其经典算法: 决策树 KNN 神经网络 支持向量 ...
分类:
其他好文 时间:
2019-06-08 15:00:20
阅读次数:
96
● bagging和boosting的区别 参考回答: Bagging是从训练集中进行子抽样组成每个基模型所需要的子训练集,然后对所有基模型预测的结果进行综合操作产生最终的预测结果。 Boosting中基模型按次序进行训练,而基模型的训练集按照某种策略每次都进行一定的转化,最后以一定的方式将基分类器 ...
分类:
编程语言 时间:
2019-06-03 21:52:50
阅读次数:
156
一、BP_ Adaboost模型 Adaboost 算法的思想是合并多个“弱”分类器的输出以产生有效分类。其主要步骤为 : (1)首先给出弱学习算法和样本空间(x, y) ,从样本空间中找出 m 组训练数据,每组训练数据的权重都是 1 /m。 (2)用弱学习算法迭代运算 T 次,每次运算后都按照分类 ...
分类:
其他好文 时间:
2019-05-26 15:55:53
阅读次数:
177
第二十八节集成学习之随机森林概念介绍(1) 从本系列开始,我们讲解一个新的算法系列集成学习。集成学习其实是怎么样去应用决策树解决一些问题。 在机器学习领域集成学习是一种非常简单直接的提升分类器回归器预测效果的一种思路。决策树有一个困境,当层数太深的时候会有过拟合问题,当我不想过拟合,就通过预剪枝给它 ...
分类:
其他好文 时间:
2019-05-20 10:27:15
阅读次数:
121
Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值... ...
分类:
编程语言 时间:
2019-05-19 22:06:50
阅读次数:
191
上一篇博客用词袋模型,包括词频矩阵、Tf-Idf矩阵、LSA和n-gram构造文本特征,做了Kaggle上的电影评论情感分类题。 这篇博客还是关于文本特征工程的,用词嵌入的方法来构造文本特征,也就是用word2vec词向量和glove词向量进行文本表示,训练随机森林分类器。 一、训练word2vec ...
分类:
其他好文 时间:
2019-05-19 18:10:28
阅读次数:
149
现在自然语言处理用深度学习做的比较多,我还没试过用传统的监督学习方法做分类器,比如SVM、Xgboost、随机森林,来训练模型。因此,用Kaggle上经典的电影评论情感分析题,来学习如何用传统机器学习方法解决分类问题。 通过这个情感分析的题目,我会整理做特征工程、参数调优和模型融合的方法,这一系列会 ...
分类:
其他好文 时间:
2019-05-19 11:49:23
阅读次数:
224
平时会用到sklearn.neighbors.NNeighborsClassifier函数来构建K最邻近分类器,所以这里对NNeighborsClassifier中的参数进行说明,文中参考的是scikit-learn 0.20.3版本。 NNeighborsClassifier函数中参数如下: n_ ...
分类:
其他好文 时间:
2019-05-18 18:55:13
阅读次数:
398
0提升的基本方法 对于分类的问题,给定一个训练样本集,求比较粗糙的分类规则(弱分类器)要比求精确的分类的分类规则(强分类器)容易的多。提升的方法就是从弱分类器算法出发,反复学习,得到一系列弱分类器(又称为基本分类器),然后组合这些弱分类器,构成一个强分类器。大多数的提升方法都是改变训练数据集的概率分 ...
分类:
编程语言 时间:
2019-05-09 21:45:32
阅读次数:
200